SIDEC

Smart Integrated Digital Echo Canceller PEF/PEB 20954 HT, Version 1.1 PEF/PEB 20954 E, Version 1.1

Wireline Communications

Never stop thinking.

ABM®, ACE®, AOP®, ARCOFI®, ASM®, ASP®, DigiTape®, DuSLIC®, EPIC®, ELIC®, FALC®, GEMINAX®, IDEC®, INCA®, IOM®, IPAT®-2, ISAC®, ITAC®, IWE®, IWORX®, MUSAC®, MuSLIC®, OCTAT®, OptiPort®, POTSWIRE®, QUAT®, QuadFALC®, SCOUT®, SICAT®, SICOFI®, SIDEC®, SLICOFI®, SMINT®, SOCRATES®, VINETIC®, 10BaseV®, 10BaseVX® are registered trademarks of Infineon Technologies AG. 10BaseS™, EasyPort™, VDSLite™ are trademarks of Infineon Technologies AG. Microsoft® is a registered trademark of Microsoft Corporation, Linux® of Linus Torvalds, Visio® of Visio Corporation, and FrameMaker® of Adobe Systems Incorporated.

The information in this document is subject to change without notice.

Edition 2004-07-28

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany
© Infineon Technologies AG 7/28/04.

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

SIDEC

Revision History:		2004-07-28	Rev. 2				
Previous Version:		Data Sheet, DS1, 1999-04					
Page	Subjects (major changes since last revision)					
Changes from previous version DS3, 2003-06-01 to DS4, 2003-09-01							
Page 141	timing t_sm	on_delay					
	document rearranged						
		configuration hints in the "Operational and following pages	l Description" on				

Table of	Contents	Page
1 1.1 1.2 1.3	Introduction Key Features Logic Symbol Typical Applications	12
2 2.1 2.2 2.3	Pin Description Pin Diagram Pin Definitions and Functions for the P-TQFP-144-8 package Pin Definitions and Functions for the P-LFBGA-160-2 Package	20
3 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 3.1.10 3.1.11 3.1.12 3.2 3.2.1 3.2.2 3.2.3	Functional Description Functional Block Diagram and Description Speech Control Disabling Logic Adaptive Echo Estimation Unit PCM Input/Output Interface Subtractor Non Linear Processor Microprocessor Interface Universal Control and Communication Interface Watchdog Timer Clock Control JTAG and RAM BIST Test Description of Functional Features Channelwise and Global A- and m-Law Conversion Bypass and Disabling Functions UCC Interface	43 44 44 45 45 45 46 46 46 46 47 47
4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.3.1 4.3.2 4.3.3 4.3.4	Operational Description Pin Connection Diagram for SIDEC Synchronization and Clock Modes PCM Signal Timing and Frame Alignment Timing of SYNCI and SYNCO Clock Timing within External VCO Capture Range Serial Interface (Controlling and Monitoring) Timing UCC Interface Signal Timing and Frame Alignment Speech Highway Control Signals for CAS in T1 Systems Microprocessor Interface Operational functions overview Adaptive filter function Filter Filter coefficient adaptation Stability / divergence protection	51 52 57 60 61 63 63 67 67 67

Table of	f Contents	Page
4.3.4.1	Coefficient damping	68
4.3.4.2	Auxiliary coefficient supervision	
4.3.4.3	Sinusoidal (non-voice) signal protection	
4.3.4.4	Overcompensation protection	
4.3.4.5	Low frequency RI superimposing	
4.3.5	Non linear processing	
4.3.5.1	Background noise measurement	
4.3.5.2	Background noise insertion	68
4.3.5.3	NLP control	69
4.3.6	Double talk detection	69
4.3.7	Voice activity detection	69
4.3.8	Offset compensation	69
4.3.9	Disable tone detection functions	
4.3.10	Other disable event detection functions	
4.4	Operational functions configuration	
4.4.1	Adaptive filter function	
4.4.1.1	Filter	
4.4.1.2	Filter coefficient Adaptation Speed	
4.4.1.3	Stability / divergence protection	
4.4.2	Non linear processing	74
5	Register Description	77
5.1	Detailed Register Description	
5.1.1	Register Map	77
5.1.2	Read-Write-Register	83
5.1.3	Write Register	84
5.1.4	Read Register	118
6	Electrical Characteristics	128
6.1	Absolute Maximum Ratings	
6.2	Operating Range	
6.3	DC Characteristics	
6.4	AC Characteristics	
6.5	Capacitances	
6.6	Timing Diagrams	
6.6.1	Clock Timing	
6.6.2	PCM Signal Timing and Frame Alignment	133
6.6.3	Timing of SYNCI and SYNCO	
6.6.4	Clock Timing within External VCO Capture Range	
6.6.5	Serial Interface (Controlling and Monitoring) Timing	
6.6.6	UCC Interface Signal Timing and Frame Alignment	
6.6.7	Speech Highway Control Signals for CAS in T1 Systems	
6.6.8	Microprocessor Interface	147

Table of Contents						
6.6.8.1	Intel Mode (IM0='0')	148				
6.6.8.2	Motorola Mode (IM0='1')	150				
6.6.9	JTAG Timing	156				
7	Package Outlines	157				
8	Glossary	159				

List of Figu	ures	Page
Figure 1	Logic Symbol of the SIDEC	15
Figure 2	SIDEC in a Circuit Emulation Service Carried over ATM	16
Figure 3	SIDEC in a Voice over IP Gateway	17
Figure 4	SIDEC in a Private Branch Exchange (PBX)	18
Figure 5	SIDEC in a Wireless System	
Figure 6	Pin Configuration P-TQFP-144-8	20
Figure 7	Pin Configuration P-LFBGA-160-2(top view)	21
Figure 8	Block Diagram	43
Figure 9	Explanation of Options for A- and m-Law Conversion	48
Figure 10	Bypass and Disabling Functions of the SIDEC	49
Figure 11	UCC Signal for control of PCM Signal	50
Figure 12	Internet Working Unit: SIDEC between a FALC and IWE8	51
Figure 13	Master Clock Mode, ext. 32.768 MHz, no SDECI Clock	52
Figure 14	Master Clock Mode with External 8.192 MHz Clock	53
Figure 15	Slave Clock Mode with External 8.192 MHz and 32.768 MHz	54
Figure 16	Reference Clock Mode with 2.048 MHz	55
Figure 17	128 ms Delay Mode	56
Figure 18	Multiple SIDEC	
Figure 19	PCM Signal Timing and Frame Alignment	58
Figure 20	Delay of PCM Signals	59
Figure 21	PCM and UCC Signal synhcronization to SCLKI and SYNCI	59
Figure 22	Timing of SYNCI and SYNCO	60
Figure 23	Clock Timing within External VCO Capture Range	61
Figure 24	Serial Interface (Controlling and Monitoring) Timing	
Figure 25	UCC Interface Signal Timing and Frame Alignment	63
Figure 26	Special Cases for Multiframe Alignment and Timing Characteristics	65
Figure 27	Timing of Supporting signals for CAS-BR Applications	66
Figure 28	Explanation of Test Pattern Generation (random sign signal)	. 100
Figure 29	Input/Output Waveforms for AC-Tests	. 130
Figure 30	Clock Timing	. 132
Figure 31	PCM Signal Timing and Frame Alignment	. 134
Figure 32	Delay of PCM Signals	
Figure 33	PCM and UCC Signal synchronization to SCLKI and SYNCI	. 135
Figure 34	Timing of SYNCI and SYNCO	. 137
Figure 35	Clock Timing within External VCO Capture Range	. 139
Figure 36	Serial Interface (Controlling and Monitoring) Timing	. 140
Figure 37	UCC Interface Signal Timing and Frame Alignment	. 142
Figure 38	Special Cases for Multiframe Alignment and Timing Characteristics	. 144
Figure 39	Timing of Supporting signals for CAS-BR Applications	. 146
Figure 40	Internal Read Signal and Internal Write Signal	
Figure 41	Read Timing in Multiplexed Intel Mode (IM0='0', IM1='0')	
Figure 42	Write Timing in Multiplexed Intel Mode (IM0='0', IM1='0')	. 148

List of Figure	es	Page
Figure 43	Read Timing in Demultiplexed Intel Mode (IM0='0', IM1='1')	. 149
Figure 44	Write Timing in Demultiplexed Intel Mode (IM0='0', IM1='1')	. 149
Figure 45	Read Timing in Multiplexed Motorola Mode (IM0='1', IM1='0')	. 150
Figure 46	Write Timing in Multiplexed Motorola Mode (IM0='1', IM1='0')	. 150
Figure 47	Read Timing in Demultiplexed Motorola Mode (IM0='1', IM1='1')	. 151
Figure 48	Write Timing in Demultiplexed Motorola Mode (IM0='1', IM1='1')	. 151
Figure 49	JTAG Boundary Scan Timing	. 156
Figure 50	Location of levels and loss of an echo canceller	. 160
Figure 51	Example of an impulse response of an echo path	. 162

List of Tab	ples	Page
Table 1	Ordering Information	14
Table 2	General Pins	22
Table 3	Synchronization	22
Table 4	Microprocessor Interface	24
Table 5	Microcontroller Port Extension	25
Table 6	Processor Watchdog Circuit	26
Table 7	Speech Highways	
Table 8	UCC Interface	27
Table 9	Speech Highway Control Signals for CAS in T1 Systems	28
Table 10	Channelwise Serial Interface	28
Table 11	Test Interface for Boundary Scan according to IEEE 1149.1	30
Table 12	Test Interface	30
Table 13	Power Supply	31
Table 14	Unused Pins	31
Table 15	General Pins	32
Table 16	Synchronization	32
Table 17	Microprocessor Interface	34
Table 18	Microcontroller Port Extension	35
Table 19	Processor Watchdog Circuit	36
Table 20	Speech Highways	36
Table 21	UCC Interface	
Table 22	Speech Highway Control Signals for CAS in T1 Systems	38
Table 23	Channelwise Serial Interface	
Table 24	Test Interface for Boundary Scan according to IEEE 1149.1	40
Table 25	Test Interface	40
Table 26	Power Supply	
Table 27	Unused Pins	42
Table 28	Filter Parameter	
Table 29	Filter coefficient adaptation speed adjustment	
Table 30	Coefficient damping	
Table 31	Auxiliary coefficient supervision	
Table 32	Sinusoidal (non-voice) signal protection	
Table 33	Overcompensation protection	
Table 34	Background noise measurement	
Table 35	Background noise insertion	
Table 36	SGMOD1/0 Configuration	
Table 37	AFI Coefficients to Absolute Linear Value Conversion	
Table 38	Conversion of Monitor Register Values to dBm0 Values	
Table 39	Clock Timing Characteristics (preliminary)	
Table 40	Periods of Clock Signals	
Table 41	PCM Signal Timing and Frame Characteristics (preliminary)	
Table 42	Characteristics of Timing of SYNCI and SYNCO (preliminary)	138

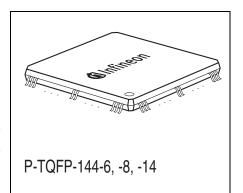
List of Tables				
Table 43	Serial Interface (Controlling and Monitoring) Timing (preliminary).	140		
Table 44	UCC Interface Signal Timing and Frame Alignment (preliminary).	145		
Table 45	Preliminary Internal Read and Write Signal Timing	147		
Table 46	Prliminary Microprocessor Interface Timing Values	152		
Table 47	JTAG Boundary Scan Timing	156		

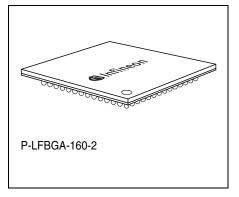
1 Introduction

The **S**mart Integrated **D**igital **E**cho **C**anceller (SIDEC) suppresses echoes in telecommunication networks which might disturb any kind of terrestrial or wireless communication. It incorporates leading edge CMOS technology as well as INFINEON's' many years' experience in Telecommunication ICs.

In communication links reflections resulting in an electrical echo are due to hybrid splits or imperfect terminations in subscribe loops. Acoustical echoes may occur due to poor isolation of microphone and speaker of some telephone system. These electrical and acoustical echoes disturb the quality of the transmission. To ensure high quality, pure data transmission the ITU-T (International Telecommunications Union, Telecommunication Standardization Sector) suggests in the recommendation G.131 the use of echo cancellers. Echo cancellation is extremely desirable for data links with total round trip transmission times of more than 50 ms.

Data Sheet 11 Rev. 2, 2004-07-28


SIDEC Smart Integrated Digital Echo Canceller


PEF/PEB 20954 HT

Version 1.1

1.1 Key Features

- 2.048 MHz PCM input and output interfaces with selectable μ and A-Law coding according to ITU G.711
- Rapid convergence of patented algorithm at the beginning or during a connection even in the presence of background noise at the near end subscriber
- Echo return loss enhancement of > 30 dB (ERLE)
- Detection of double talk for adaptive convergence control
- Independently controlled voiceband echo cancelling according to ITU G.165 and G.168 for
 - 32 channels with end echo path delay of less than
 63.75 ms
 - 16 channels with end echo path delay of less than 127.75 ms (usage of two SIDEC in parallel for simultaneous processing of 32 channels is easily possible)

- Smart Non Linear Processor controlled by echoloss, echo path delay and background noise
- Various options for comfort noise injection
- Maskable disabling functions
 - 2100 Hz tone with phase reversal detection
 - 2100 Hz tone without phase reversal detection
 - 2010 Hz continuity check (SS7)
 - via PCM timeslot 16 Bit a, b, c or d according to ITU G.704
 - individual channels maskable via Microprocessor Interface, UCC Interface and Serial Interface

Туре	Package			
PEF/PEB 20954 HT	P-TQFP-144-8			
PEF/PEB 20954 E	P-LFBGA-160-2			

- Integrated Universal Control and Communication Interface (UCCI) for signaling highways with direct hardware control for:
 - disable cancelling
 - configurable disabling functions
 - communication between board controllers
- Support of Channel Associated Signaling (CAS) BR transparency (robbed bits) in send path
- Selectable μ- to A-Law or A- to μ-Law Conversion on a global or per channel basis
- Configurable idle channel supervision
- Clear channel capability (64 clear) on a per channel basis
- Special evaluation of bit 8 in T1 Modem calls possible (56 clear)
- Serial 256 kbit/s interface to control the functions disable cancelling, freeze coefficients, clear channel, disable NLP, PCM Law conversion control or combinations of above
- Monitor pins for several internal states
- Switchable global loop from receive output to send input and send output to receive input
- Switchable global attenuation (2.5 dB or 6 dB) at the receive and send output
- Flexible Microprocessor Interface (Intel or Motorola type, Mux and Demux mode) usable for:
 - configuration of parameters such as thresholds and functions on a global basis
 - Disable cancelling, freeze coefficients, clear channel, disable NLP, PCM Law conversion control (all functions individually for each channel)
 - support of background tests for disabled or idle timeslots (feeding and reading of test levels)
 - possibility to read levels, attenuations, internal states, signal values or all coefficients of a selected timeslot
 - control of the RAM Built In Self Test
- Advanced Integrated Watchdog Timer
- Supervision of the input clocks
- Various clock modes possible for 32.768 MHz and 8.192 MHz
- Boundary Scan according to IEEE 1149.1 Standard
- Power supply: 3.3 V, 5V tolerant inputs
- Typical power dissipation: 900 mW
- Plastic package P-TQFP 144-8, P-LFBGA 160-2
- Temperature range: -40°C 85°C and 0°C 70°C

Data Sheet 13 Rev. 2, 2004-07-28

Ordering Information

Table 1 Ordering Information

Product	Package	Q-Number
PEB 20954 HT	P-TQFP 144-8 (0°C - 70°C)	Q67003 H9363
PEF 20954 HT	P-TQFP 144-8 (-40°C - 85°C)	Q67003 H9364
PEB 20954 E	P-LFBGA-160-2 (0°C - 70°C)	Q67003 H9422
PEF 20954E	P-LFBGA-160-2 (-40°C - 85°C)	Q67003 H9423

Data Sheet 14 Rev. 2, 2004-07-28

1.2 Logic Symbol

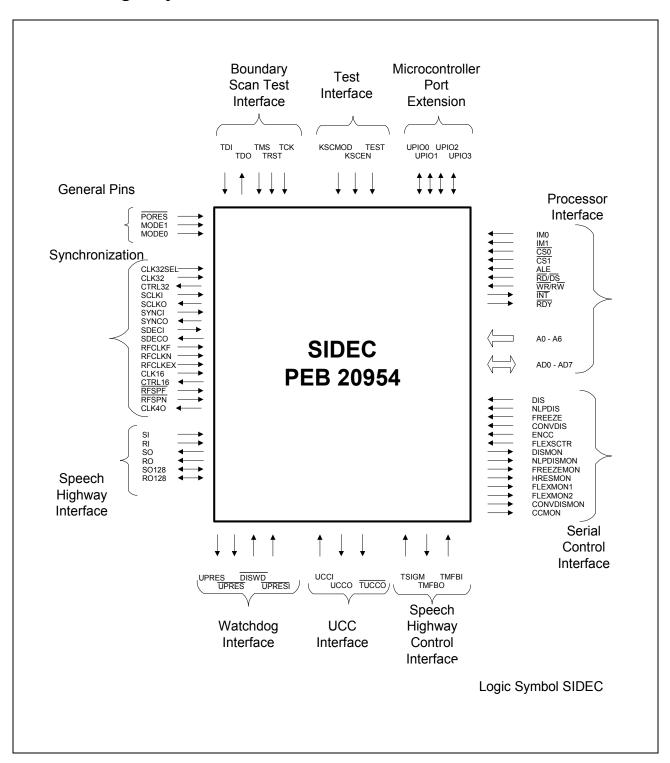


Figure 1 Logic Symbol of the SIDEC

1.3 Typical Applications

The SIDEC can be used for various applications.

Figure 2 to Figure 5 display typical examples.

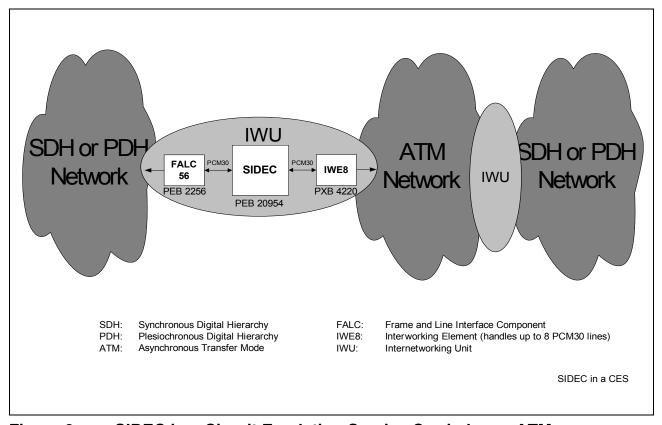


Figure 2 SIDEC in a Circuit Emulation Service Carried over ATM

In this interworking unit there are two INFINEON products connected to the SIDEC. The FALC 56 serves as a frame and line interface component whereas the IWE8 PXB 4220 operates as an interworking element.

The delays of networks and the inter working units are usually long. In the application above the SIDEC cancels the echo that is generated by reflection on the near end side and heard by the far end speaker. The SIDEC can cancel end echo paths (SDH or PDH Network on near end side) up to 128 ms. For details see Figure 17.

For the set up illustrated in Figure 2 a application note "Using SIDEC in a Voice over ATM Application" is available.

Data Sheet 16 Rev. 2, 2004-07-28

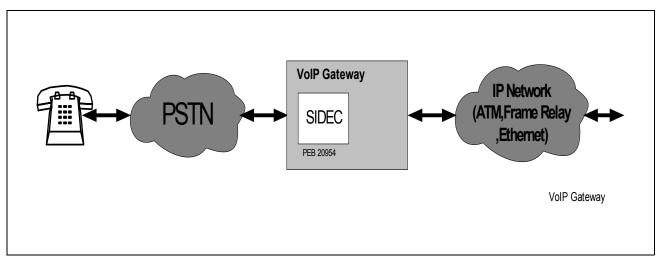


Figure 3 SIDEC in a Voice over IP Gateway

An emerging market in the telecom industry is "Voice Over IP". Due to the long delay echo cancellation is required. The delay is introduced through packetizing and voice compression. The SIDEC handles different functions in a Voice over IP gateway, such as Voice Detection, Voice Activity Detection, Comfort Noise and A-law u-law conversion regarding G.711.

In a gateway the SIDEC points into the PSTN network as shown in **Figure 3**. The echo itself is generated by the hybrid in the PSTN cloud. Before the voice signal from the POTS gets packetized into ATM, FR or Ethernet cells the echo is being cancelled by the SIDEC.

For a high voice quality in "Voice Over IP" environment echo cancellation is a major requirement.

Data Sheet 17 Rev. 2, 2004-07-28

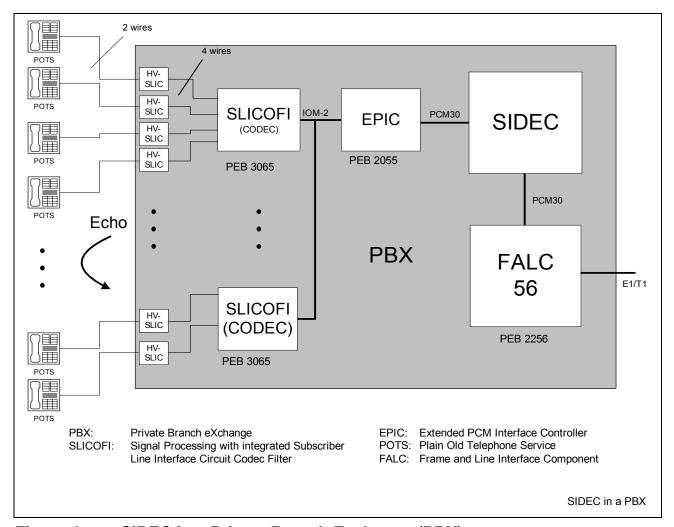


Figure 4 SIDEC in a Private Branch Exchange (PBX)

SIDEC can be used in a PBX or Central Office (CO) to cancel the echo next to the customer side (near end echo). The echo delay is kept short. The delay for this application is usually less than 64ms and the SIDEC can cancel up to 32 channels.

Figure 4 shows a PBX with a T1/E1 interface FALC LH to the CO on the one side. On the other side analog phones are connected.

A possible INFINEON solution with the SICOFI (includes D/A and A/D conversion) and the SLIC (hybrid) to connect the analog phone is shown above.

Data Sheet 18 Rev. 2, 2004-07-28

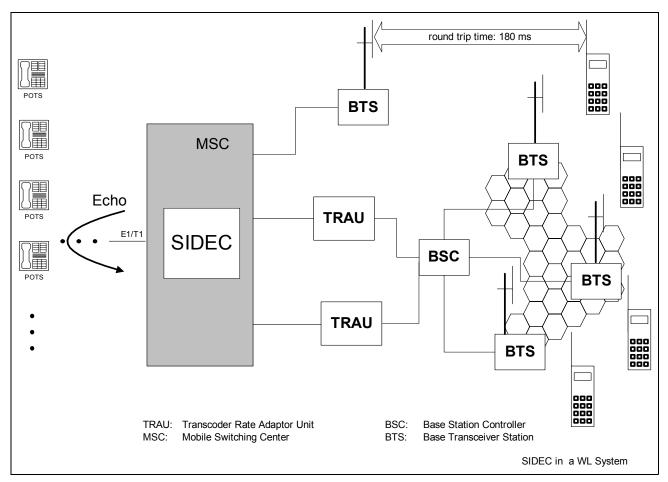


Figure 5 SIDEC in a Wireless System

Due to voice compression and error correction the one way transmission time for wireless voice signals is typically 90 ms. With 180 ms roundtrip time the 50 ms roundtrip time for echo free transmission is exceeded by at least 130 ms. Hence, the speaker on the mobile phone will hear any kind of echo generated in the hybrid next to the POTS or the acoustical echo of the POTS. The SIDEC suppresses those two kinds of echoes if it is incorporated in the MSC. Depending on the individual call the end echo path can differ dramatically. In Europe the end echo path could even go to different countries causing strong dispersion of the echo. Only a high quality echo canceller with long end path delay options guarantees compensation of the strongly varying echoes.

2 Pin Description

2.1 Pin Diagram

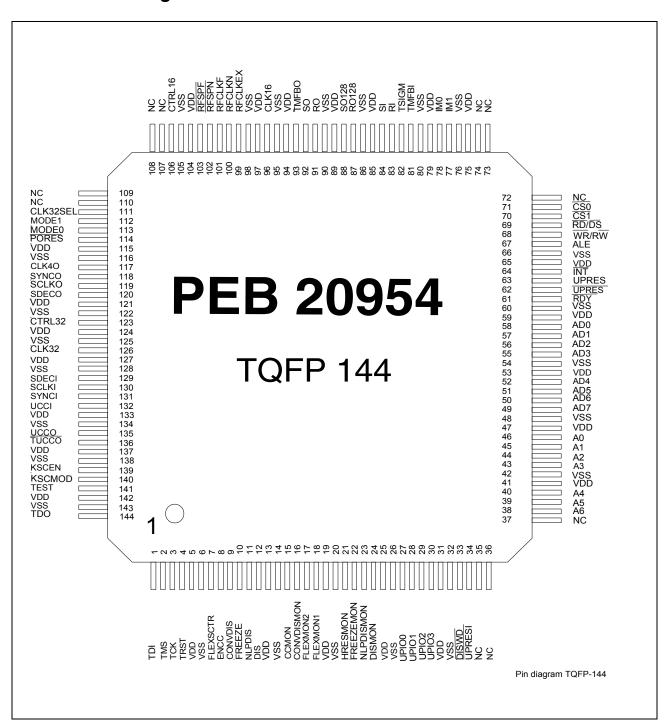


Figure 6 Pin Configuration P-TQFP-144-8

	Α	В	С	D	E	F	G	н	J	к	L	М	N	Р
14	NC	CTRL16	RFSPF_N	RFCLKF	RFCLKEX	TMFBO	RO	SO128	NC	RI	TMFBI	IMO	IM1	CS0_N
13 [MODE1	CLK32SEL	NC	RFSPN_N	RFLKN	CLK16	so	RO128	SI	TSIGM	NC	NC	NC	CS1_N
12 P	PORES_N	MODE0	VSS	VDD	VSS	VDD	VDD	VDD	VDD	VSS	VDD	VSS	RD_N/ DS_N	WR_N/ RW_N
11 5	SYNCO	CLK4O	VDD	VSS	VDD	vss	VDD	VDD	VSS	VDD	vss	VDD	ALE	INT_N
10 8	SDECO	SCLKO	VSS	VDD							VDD	VSS	UPRES	UPRES_N
9 (CTRL32	NC	VDD	VSS							VSS	VDD	RDY_N	AD0
8	CLK32	NC	VDD	VDD							VDD	VDD	AD1	AD2
7	SDECI	SCLKI	VDD	VDD							VDD	VDD	AD4	AD3
6	SYNCI	UCCI	VDD	VSS							VSS	VDD	AD6	AD5
5	UCCO	TUCCO_N	VSS	VDD							VDD	VSS	A0	AD7
4	KSCEN	NC	VDD	VSS	VDD	VSS	VDD	VDD	VSS	VDD	VSS	VDD	A2	A1
3 K	SCMOD	NC	VSS	VDD	VSS	VDD	VDD	VDD	VDD	VSS	VDD	VSS	A4	А3
2	TEST	TDI	тск	FLEX SCTR	CONV DIS	NLPDIS	CCMON	FLEX MON1	FREEZE MON	DISMON	UPIO1	UPIO3	A6	A5
1	TDO	TMS	TRST	ENCC	FREEZE	DIS	CONV DISMON	FLEX MON2	HRES MON	NLP DISMON	UPIO0	UPIO2	DISWD_N	UPRESI_N
	Α	В	С	D	E	F	G	Н	J	К	L Pir	м n diagra	ım LFB0	P GA160

Figure 7 Pin Configuration P-LFBGA-160-2(top view)

2.2 Pin Definitions and Functions for the P-TQFP-144-8 package

Table 2 General Pins

Pin No.	Symbol	Input (I) Output (O) Pull Up / Pull Down	Funct	iion				
114	PORES	I, PU	Power On Reset. A low on this pin forces all registers and counters to predefined values					
112 113	MODE1 MODE0	I, PU I, PU	1	End delay < 64ms	1 0	For future use		
112 113	MODE1 MODE0	I, PU I, PU	0	End delay < 128 ms Master Mode	0	End delay < 128 ms Slave Mode		

 Table 3
 Synchronization

Pin No.	Symbol	I/O, PU/PD	Function
111	CLK32SEL	I, PU	Selects from which source SCLKO will be derived: '1': SCLKO will be derived from CLK32 by dividing by 4 '0': SCLKO will be derived from CLK16 by dividing by 2
126	CLK32	I, PU	32.768 MHz Operating Clock for the SIDEC
123	CTRL32	0	Control voltage for the 32.768 MHz operating Clock VCO, maskable for reduced power consumption
130	SCLKI	I, PU	System clock input (8.192 MHz) for PCM- and UCCI
119	SCLKO	0	8.192 MHz system clock output, source CLK32 or CLK16 is selectable via pin CLK32SEL, maskable for reduced power consumption
117	CLK4O	0	4.096 MHz system clock output for subsequent circuits, derived from SCLKI, maskable for reduced power consumption

Table 3Synchronization (cont'd)

Pin No.	Symbol	I/O, PU/PD	Function
131	SYNCI	I, PU	System Synchronization input pulse. Defines the frame alignment of PCM and UCCI signals in conjunction with the values in registers RIALIGN, SIALIGN, SOALIGN, UCCALIGN, PHALIGN and also the multiframe alignment of the UCCI. Must be integer multiple of 125 μs if UCC Interface is not used. Must be multiple integer of 4 ms if UCC interface is used. Leave open if not used or connect to V_{DD}
118	SYNCO	O	System Synchronization output pulse (see SYNCI), duration configurable one or two SCLKO periods, period 125 µs. If the UCC interface is not used and no SYNCI is applied, SYNCO can take over the part and role of SYNCI.
120	SDECO	O	Synchronization output pulse for other SIDECs if this SIDEC uses its own 32.768 MHz VCO. Can also be used for synchronization of external devices to the serial control input and monitor output signals of the SIDEC. The pulse width is 488 ns with a period of 125 µs.
129	SDECI	I, PU	Synchronization input pulse if the SIDEC uses the 32.768 MHz VCO of another SIDEC. The same SCLKI signal can be applied to SDECI and SCLKI pin if the SCLKI is supplied by a source with correct phase condition to the CLK32 (see Figure 15). If the pin is not used leave it open or connect it to V _{DD} .
101	RFCLKF	I, PU	Reference clock (2.048 MHz) for frequency comparison to generate the control voltage for the 16.384 MHz VCXO if Register FSLIPIV[6:5]="00"
100	RFCLKN	I, PU	Reference clock (2.048 MHz) for frequency comparison to generate the control voltage for the 16.384 MHz VCXO if Register FSLIPIV[6:5]="01"

Table 3Synchronization (cont'd)

Pin No.	Symbol	I/O, PU/PD	Function
99	RFCLKEX	I, PU	Reference clock (2.048 MHz) for frequency comparison to generate the control voltage for the 16.384 MHz VCXO if Register FSLIPIV[6]='1'
96	CLK16	I, PU	Clock from 16.384 MHz VCXO
106	CTRL16	0	Control voltage for the 16.384 MHz VCXO
103	RFSPF	I, PU	Receive Frame Sync Pulse from the far end side (F1). This pulse of 488 ns width marks timeslot 0 when writing into Elastic Store (e.g. FALC) to prevent faults in one frame length mode. To use this pin Register FSLIPIV[5] must be '0'.
102	RFSPN	I, PU	Receive Frame Sync Pulse from the near end side (F2). This pulse of 488 ns width marks timeslot 0 when writing into Elastic Store (e.g. FALC) to prevent faults in one frame length mode. To use this pin Register FSLIPIV[5] must be '1'.

 Table 4
 Microprocessor Interface

Pin No.	Symbol	I/O, PU/PD	Function
78	IM0	I, PU	Interface Mode Intel = low, Motorola = high
77	IM1	I, PU	Interface Mode MUXED = low, DEMUXED = high
71	CS0	I, PU	Chip Select. A low signal selects the SIDEC (internally "anded" with CS1).
70	CS1	I, PU	Chip Select. A low signal selects the SIDEC (internally "anded" with CS0).
46-43 40-38	A0A6	I, PU	Address Bus. Only used in demuxed mode, can be left open in muxed mode.
58-55 52-49	AD0AD7	I/O, -	Multiplexed Address/Data Bus in multiplexed mode, Data Bus in demultiplexed mode

 Table 4
 Microprocessor Interface (cont'd)

Pin No.	Symbol	I/O, PU/PD	Function
67	ALE	I, PU	Address Latch Enable in multiplexed mode. Address on AD bus is internally latched with the falling edge of ALE. This signal is also used for the internal clock supervision. In Demuxed mode there must be provided an external independent clock signal (i.e. processor clock) in order to enable proper clock supervision.
69	RD/DS	I, PU	Intel mode. A low indicates a read operation. Motorola mode. Data Strobe, active low to control read/write
68	WR/RW	I, PU	Intel mode. A low indicates a write operation. Motorola mode. High = read cycle, low = write cycle
64	ĪNT	O, (od)	Interrupt request from the SIDEC, active low
61	RDY	O, (od)	Ready signal for µC devices that support this feature. For read cycles the signal is asserted after the data on the AD bus is valid. For writing cycles the signal is asserted when a write access is ready to be concluded.

 Table 5
 Microcontroller Port Extension

Pin No.	Symbol	I/O, PU/PD	Function
27	UPIO0	I/O, PU	Pin that can be read and controlled by the on board processor via register UPIO
28	UPIO1	I/O, PU	Pin that can be read and controlled by the on board processor via register UPIO
29	UPIO2	I/O, PU	Pin that can be read and controlled by the on board processor via register UPIO
30	UPIO3	I/O, PU	Pin that can be read and controlled by the on board processor via register UPIO

Table 6 Processor Watchdog Circuit

Pin No.	Symbol	I/O, PU/PD	Function
63	UPRES	O	μP-Reset. High pulse (125 μs) if the μP fails to write predefined values to the registers WDG1 to WDG3 in this sequence within 2 s and DISWD='1'. Also active if PORES='0' or UPRESI='0'
62	<u>UPRES</u>	0	Same as UPRES, but low active
33	DISWD	I, PU	Disable of µP-Reset on active watchdog condition if set to low
34	UPRESI	I, PU	Produces a reset signal at UPRES, UPRES if set to low

Table 7 Speech Highways

Pin No.	Symbol	I/O, PU/PD	Function
84	SI	I, PD	2.048 Mbit/s Send speech highway input. Start of timeslot 0, bit 7 can be flexibly aligned to the SYNCI/SYNCO pulse in 122 ns steps via registers SIALIGN and PHALIGN[3:2]
83	RI	I, PD	2.048 Mbit/s Receive speech highway input. Start of timeslot 0, bit 7 can be flexibly aligned to the SYNCI/SYNCO pulse in 122 ns steps via registers RIALIGN and PHALIGN[1:0]
92	SO	0	2.048 Mbit/s Send speech highway output. Start of timeslot 0, bit 7 can be flexibly aligned to the SYNCI/SYNCO pulse in 122 ns steps via registers SOALIGN and PHALIGN[5:4]
91	RO	0	2.048 Mbit/s Receive speech highway output. This signal will has a fixed delay of one PCM frame (125 µs) with respect to RI

Table 7 Speech Highways

Pin No.	Symbol	I/O, PU/PD	Function
88	SO128	I/O, PU	Auxiliary 2.048 Mbit/s Send speech highway output in 128 ms mode. Input in master mode, output in slave mode. The pins of master and slave SIDEC in 128 ms mode should be connected to enable a 32 channel system. The signal from the slave is multiplexed in the master with the internally generated signal and output (clocked) with the system clock. Tristate and meaningless in 64 ms mode
87	RO128	I/O, PU	Auxiliary 2.048 Mbit/s Receive speech highway output in 128 ms mode. Input in master mode, output in slave mode. The pins of master and slave SIDEC in 128 ms mode should be connected to enable a 32 channel system. The signal from the slave is multiplexed in the master with the internally generated signal and output (clocked) with the system clock. Tristate and meaningless in 64 ms mode

Table 8 UCC Interface

Pin No.	Symbol	I/O, PU/PD	Function
132	UCCI	I, PD	2.048 Mbit/s UCC highway input. Start of timeslot 0, bit 7 and frame number can be flexibly aligned to the SYNCI/SYNCO pulse in 122 ns steps via registers UCCMFR, UCCALIGN and PHALIGN[7:6]

Table 8 UCC Interface

Pin No.	Symbol	I/O, PU/PD	Function
135	UCCO	0	2.048 Mbit/s UCC highway output. Start of timeslot 0, bit 7 and frame number can be flexibly aligned to the SYNCI/SYNCO pulse in 122 ns steps via registers UCCMFR, UCCALIGN and PHALIGN[7:6]
136	TUCCO	O	Tristate control signal for external tristate output buffer at the UCCO bus, active low. Remains inactive after a power on reset until the configuration by the µP has been settled. Active only at UCC timeslot 0 for UCC frames that correspond to processed PCM channels

Table 9 Speech Highway Control Signals for CAS in T1 Systems

Pin No.	Symbol	I/O, PU/PD	Function
82	TSIGM	I, PD	Transmit Signaling Marker, indicating robbed bits at SI, corresponding to the delay of SI
81	TMFBI	I, PD	Transmit Multiframe Begin Input corresponding to the delay of SI
93	TMFBO	O	Transmit Multiframe Begin Output corresponding to the delay of SO. The delay of TMFBI to TMFBO is identical to the delay of SI to SO

Table 10 Channelwise Serial Interface

Pin No.	Symbol	I/O, PU/PD	Function
12	DIS	I, PD	Serial 256 kbit/s disable signal to bypass the canceller, NLP and attenuator and to reset the H-Register and Speech Control unit on a per channel basis. High active, maskable, leave open or connect to ground if unused
11	NLPDIS	I, PD	Serial 256 kbit/s signal to disable the NLP on a per channel basis. High active, maskable, leave open or connect to ground if unused

Table 10Channelwise Serial Interface (cont'd)

Pin No.	Symbol	I/O, PU/PD	Function	
10	FREEZE	I, PD	Serial 256 kbit/s signal to freeze the H- Registers on a per channel basis. High active, maskable, leave open or connect to ground if unused	
9	CONVDIS	I, PD	Serial 256 kbit/s signal to disable A/µ-Law conversion on a per channel basis. High active, maskable, leave open or connect to ground if unused	
8	ENCC	I, PD	Serial 256 kbit/s signal to enable clear channel transparency on a per channel basis. High active, maskable, leave open or connect to ground if unused, same function as DIS='1' and CONVDIS='1'	
7	FLEXSCTR	I, PD	Flexible serial 256 kbit/s control signal on a per channel basis. Configurable by register CONFLEXSCTR. High active, maskable, leave open or connect to ground if unused	
24	DISMON	0	Serial 256 kbit/s EC disable (signals bypass channels) monitor output signal ('0': EC on, '1': EC off)	
23	NLPDISMON	0	Serial 256 kbit/s NLP disable monitor output signal ('0': NLP on, '1': NLP off)	
22	FREEZEMON	0	Serial 256 kbit/s H-Register freeze monitor output signal ('1': freeze, '0': no freeze)	
21	HRESMON	0	Serial 256 kbit/s H-Register reset monitor output signal ('1': reset, '0': no reset)	
18	FLEXMON1	O	Serial 256 kbit/s monitor output signal (32 channels at 8 kbit/s), monitoring according to settings of the bits CONFLEXMON[7:4], e.g. Idle channel detection, 2010 Hz tone detected, 2100 Hz tone with or without phase reversal detected, double talk detected, no speech detected	

Table 10 Channelwise Serial Interface (cont'd)

Pin No.	Symbol	I/O, PU/PD	Function
17	FLEXMON2	0	Serial 256 kbit/s monitor output signal (32 channels at 8 kbit/s), monitoring according to settings of the bits CONFLEXMON[3:0], e.g. Idle channel detection, 2010 Hz tone detected, 2100 Hz tone with or without phase reversal detected, double talk detected, no speech detected
16	CONVDISMON	0	Serial 256 kbit/s law conversion disable monitor output signal ('1': conversion disabled, '0': conversion enabled)
15	CCMON	0	Serial 256 kbit/s clear channel transparency (64 clear) monitor output signal ('1': clear channel on, '0': clear channel off), same as DISMON='1' and CONVDISMON='1'

Table 11 Test Interface for Boundary Scan according to IEEE 1149.1

Pin No.	Symbol	I/O, PU/PD	Function	
1	TDI	I, PU	Test Data Input	
144	TDO	0	Test Data Output	
2	TMS	I, PU	Test Mode Select	
3	TCK	I, PU	Test Clock	
4	TRST	I, PU	Boundary Test Reset (active low, should be tied to '0' for normal operation)	

Table 12 Test Interface

Pin No.	Symbol	I/O, PU/PD	Function	
140	KSCMOD	I, PD	SCAN MODE ENABLE pin for enabling of scan test. For normal operation this pin should be left unconnected or connected to V _{SS} .	

Table 12 Test Interface (cont'd)

Pin No.	Symbol	I/O, PU/PD	Function
139	KSCEN	I, PD	SCAN SHIFT ENABLE pin for shift enabling in scan test. For normal operation this pin should be left unconnected or connected to V _{SS} .
141	TEST	I, -	Reserved for special tests (i.e. IDDQ, MBIST, etc.). For normal operation this pin must be connected to V _{SS} . Disables all pull resistances for IDDQ if set to '1'. Normal operation: '0'.

Note: The Test interface will be used by the manufacturer. For normal operation, this pins should be connected to the recommended fixed value in the table.

Table 13 Power Supply

Pin No.	Symbol	I/O, PU/PD	Function
6,14,20,26, 32,42,48,54,6 0,66,76,80,86 ,90,95,98,105 ,116, 122,125, 128,134, 138,143	VSS		Common ground rail
5,13,19,25, 31,41,47, 59,65,75, 79,85,89,94, 97,104,115, 121,124, 127,133, 137,142	VDD		Core power supply

Table 14 Unused Pins

Pin No.	Symbol	I/O, PU/PD	Function
35,36,	NC		Common ground rail
37,72,7			
3,74,10			
7,108,1			
09,110,			

2.3 Pin Definitions and Functions for the P-LFBGA-160-2 Package

Table 15 General Pins

Ball No.	Symbol	Input (I) Output (O) Pull Up / Pull Down	Funct	iion		
A12	PORES	I, PU		r On Reset. A lovers and counters		•
A13 B12	MODE1 MODE0	I, PU I, PU	1	End delay < 64ms	1	For future use
A13 B12	MODE1 MODE0	I, PU I, PU	0	End delay < 128 ms Master Mode	0	End delay < 128 ms Slave Mode

 Table 16
 Synchronization

Ball No.	Symbol	I/O, PU/PD	Function
B13	CLK32SEL	I, PU	Selects from which source SCLKO will be derived: '1': SCLKO will be derived from CLK32 by dividing by 4 '0': SCLKO will be derived from CLK16 by dividing by 2
A8	CLK32	I, PU	32.768 MHz Operating Clock for the SIDEC
A9	CTRL32	0	Control voltage for the 32.768 MHz operating Clock VCO, maskable for reduced power consumption
B7	SCLKI	I, PU	System clock input (8.192 MHz) for PCM- and UCCI
B10	SCLKO	0	8.192 MHz system clock output, source CLK32 or CLK16 is selectable via pin CLK32SEL, maskable for reduced power consumption
B11	CLK4O	0	4.096 MHz system clock output for subsequent circuits, derived from SCLKI, maskable for reduced power consumption

Table 16Synchronization (cont'd)

Ball No.	Symbol	I/O, PU/PD	Function
A6	SYNCI	I, PU	System Synchronization input pulse. Defines the frame alignment of PCM and UCCI signals in conjunction with the values in registers RIALIGN, SIALIGN, SOALIGN, UCCALIGN, PHALIGN and also the multiframe alignment of the UCCI. Must be integer multiple of 125 μs if UCC Interface is not used. Must be multiple integer of 4 ms if UCC interface is used. Leave open if not used or connect to V_{DD}
A11	SYNCO	O	System Synchronization output pulse (see SYNCI), duration configurable one or two SCLKO periods, period 125 µs. If the UCC interface is not used and no SYNCI is applied, SYNCO can take over the part and role of SYNCI.
A10	SDECO	O	Synchronization output pulse for other SIDECs if this SIDEC uses its own 32.768 MHz VCO. Can also be used for synchronization of external devices to the serial control input and monitor output signals of the SIDEC. The pulse width is 488 ns with a period of 125 µs.
A7	SDECI	I, PU	Synchronization input pulse if the SIDEC uses the 32.768 MHz VCO of another SIDEC. The same SCLKI signal can be applied to SDECI and SCLKI pin if the SCLKI is supplied by a source with correct phase condition to the CLK32 (see Figure 15). If the pin is not used leave it open or connect it to V _{DD} .
D14	RFCLKF	I, PU	Reference clock (2.048 MHz) for frequency comparison to generate the control voltage for the 16.384 MHz VCXO if Register FSLIPIV[6:5]="00"
E13	RFCLKN	I, PU	Reference clock (2.048 MHz) for frequency comparison to generate the control voltage for the 16.384 MHz VCXO if Register FSLIPIV[6:5]="01"

 Table 16
 Synchronization (cont'd)

Ball No.	Symbol	I/O, PU/PD	Function
E14	RFCLKEX	I, PU	Reference clock (2.048 MHz) for frequency comparison to generate the control voltage for the 16.384 MHz VCXO if Register FSLIPIV[6]='1'
F13	CLK16	I, PU	Clock from 16.384 MHz VCXO
B14	CTRL16	0	Control voltage for the 16.384 MHz VCXO
C14	RFSPF	I, PU	Receive Frame Sync Pulse from the far end side (F1). This pulse of 488 ns width marks timeslot 0 when writing into Elastic Store (e.g. FALC) to prevent faults in one frame length mode. To use this pin Register FSLIPIV[5] must be '0'.
D13	RFSPN	I, PU	Receive Frame Sync Pulse from the near end side (F2). This pulse of 488 ns width marks timeslot 0 when writing into Elastic Store (e.g. FALC) to prevent faults in one frame length mode. To use this pin Register FSLIPIV[5] must be '1'.

Table 17 Microprocessor Interface

Ball No.	Symbol	I/O, PU/PD	Function
M14	IMO	I, PU	Interface Mode Intel = low, Motorola = high
N14	IM1	I, PU	Interface Mode MUXED = low, DEMUXED = high
P14	CS0	I, PU	Chip Select. A low signal selects the SIDEC (internally "anded" with $\overline{\text{CS1}}$).
P13	CS1	I, PU	Chip Select. A low signal selects the SIDEC (internally "anded" with $\overline{\text{CSO}}$).
N5,P4, N4,P3, N3,P2N 2	A0A6	I, PU	Address Bus. Only used in demuxed mode, can be left open in muxed mode.
P9,N8,P 8,P7,N7 ,P6,N6, P5	AD0AD7	I/O, -	Multiplexed Address/Data Bus in multiplexed mode, Data Bus in demultiplexed mode

Data Sheet 34 Rev. 2, 2004-07-28

 Table 17
 Microprocessor Interface

Ball No.	Symbol	I/O, PU/PD	Function
N11	ALE	I, PU	Address Latch Enable in multiplexed mode. Address on AD bus is internally latched with the falling edge of ALE. This signal is also used for the internal clock supervision. In Demuxed mode there must be provided an external independent clock signal (i.e. processor clock) in order to enable proper clock supervision.
N12	RD/DS	I, PU	Intel mode. A low indicates a read operation. Motorola mode. Data Strobe, active low to control read/write
P12	WR/RW	I, PU	Intel mode. A low indicates a write operation. Motorola mode. High = read cycle, low = write cycle
P11	ĪNT	O, (od)	Interrupt request from the SIDEC, active low
N9	RDY	O, (od)	Ready signal for µC devices that support this feature. For read cycles the signal is asserted after the data on the AD bus is valid. For writing cycles the signal is asserted when a write access is ready to be concluded.

Table 18 Microcontroller Port Extension

Ball No.	Symbol	I/O, PU/PD	Function
L1	UPIO0	I/O, PU	Pin that can be read and controlled by the on board processor via register UPIO
L2	UPIO1	I/O, PU	Pin that can be read and controlled by the on board processor via register UPIO
M1	UPIO2	I/O, PU	Pin that can be read and controlled by the on board processor via register UPIO
M2	UPIO3	I/O, PU	Pin that can be read and controlled by the on board processor via register UPIO

Table 19 Processor Watchdog Circuit

Ball No.	Symbol	I/O, PU/PD	Function
N10	UPRES	0	μP-Reset. High pulse (125 μs) if the μP fails to write predefined values to the registers WDG1 to WDG3 in this sequence within 2 s and DISWD='1'. Also active if PORES='0' or UPRESI='0'
P10	<u>UPRES</u>	0	Same as UPRES, but low active
N1	DISWD	I, PU	Disable of µP-Reset on active watchdog condition if set to low
P1	UPRESI	I, PU	Produces a reset signal at UPRES, UPRES if set to low

Table 20 Speech Highways

Ball No.	Symbol	I/O, PU/PD	Function
J13	SI	I, PD	2.048 Mbit/s Send speech highway input. Start of timeslot 0, bit 7 can be flexibly aligned to the SYNCI/SYNCO pulse in 122 ns steps via registers SIALIGN and PHALIGN[3:2]
K14	RI	I, PD	2.048 Mbit/s Receive speech highway input. Start of timeslot 0, bit 7 can be flexibly aligned to the SYNCI/SYNCO pulse in 122 ns steps via registers RIALIGN and PHALIGN[1:0]
G13	SO	0	2.048 Mbit/s Send speech highway output. Start of timeslot 0, bit 7 can be flexibly aligned to the SYNCI/SYNCO pulse in 122 ns steps via registers SOALIGN and PHALIGN[5:4]
G14	RO	0	2.048 Mbit/s Receive speech highway output. This signal will has a fixed delay of one PCM frame (125 µs) with respect to RI

Table 20 Speech Highways

Ball No.	Symbol	I/O, PU/PD	Function
H14	SO128	I/O, PU	Auxiliary 2.048 Mbit/s Send speech highway output in 128 ms mode. Input in master mode, output in slave mode. The pins of master and slave SIDEC in 128 ms mode should be connected to enable a 32 channel system. The signal from the slave is multiplexed in the master with the internally generated signal and output (clocked) with the system clock. Tristate and meaningless in 64 ms mode
H13	RO128	I/O, PU	Auxiliary 2.048 Mbit/s Receive speech highway output in 128 ms mode. Input in master mode, output in slave mode. The pins of master and slave SIDEC in 128 ms mode should be connected to enable a 32 channel system. The signal from the slave is multiplexed in the master with the internally generated signal and output (clocked) with the system clock. Tristate and meaningless in 64 ms mode

Table 21 UCC Interface

Ball No.	Symbol	I/O, PU/PD	Function
B6	UCCI	I, PD	2.048 Mbit/s UCC highway input. Start of timeslot 0, bit 7 and frame number can be flexibly aligned to the SYNCI/SYNCO pulse in 122 ns steps via registers UCCMFR, UCCALIGN and PHALIGN[7:6]

Table 21 UCC Interface

Ball No.	Symbol	I/O, PU/PD	Function
A5	UCCO	0	2.048 Mbit/s UCC highway output. Start of timeslot 0, bit 7 and frame number can be flexibly aligned to the SYNCI/SYNCO pulse in 122 ns steps via registers UCCMFR, UCCALIGN and PHALIGN[7:6]
B5	TUCCO	O	Tristate control signal for external tristate output buffer at the UCCO bus, active low. Remains inactive after a power on reset until the configuration by the µP has been settled. Active only at UCC timeslot 0 for UCC frames that correspond to processed PCM channels

Table 22 Speech Highway Control Signals for CAS in T1 Systems

Pin No.	Symbol	I/O, PU/PD	Function
K13	TSIGM	I, PD	Transmit Signaling Marker, indicating robbed bits at SI, corresponding to the delay of SI
L14	TMFBI	I, PD	Transmit Multiframe Begin Input corresponding to the delay of SI
F14	TMFBO	0	Transmit Multiframe Begin Output corresponding to the delay of SO. The delay of TMFBI to TMFBO is identical to the delay of SI to SO

Table 23 Channelwise Serial Interface

Pin No.	Symbol	I/O, PU/PD	Function
F1	DIS	I, PD	Serial 256 kbit/s disable signal to bypass the canceller, NLP and attenuator and to reset the H-Register and Speech Control unit on a per channel basis. High active, maskable, leave open or connect to ground if unused
F2	NLPDIS	I, PD	Serial 256 kbit/s signal to disable the NLP on a per channel basis. High active, maskable, leave open or connect to ground if unused

 Table 23
 Channelwise Serial Interface (cont'd)

Pin No.	Symbol	I/O, PU/PD	Function
E1	FREEZE	I, PD	Serial 256 kbit/s signal to freeze the H- Registers on a per channel basis. High active, maskable, leave open or connect to ground if unused
E2	CONVDIS	I, PD	Serial 256 kbit/s signal to disable A/µ-Law conversion on a per channel basis. High active, maskable, leave open or connect to ground if unused
D1	ENCC	I, PD	Serial 256 kbit/s signal to enable clear channel transparency on a per channel basis. High active, maskable, leave open or connect to ground if unused, same function as DIS='1' and CONVDIS='1'
D2	FLEXSCTR	I, PD	Flexible serial 256 kbit/s control signal on a per channel basis. Configurable by register CONFLEXSCTR. High active, maskable, leave open or connect to ground if unused
K2	DISMON	0	Serial 256 kbit/s EC disable (signals bypass channels) monitor output signal ('0': EC on, '1': EC off)
K1	NLPDISMON	0	Serial 256 kbit/s NLP disable monitor output signal ('0': NLP on, '1': NLP off)
J2	FREEZEMON	0	Serial 256 kbit/s H-Register freeze monitor output signal ('1': freeze, '0': no freeze)
J1	HRESMON	0	Serial 256 kbit/s H-Register reset monitor output signal ('1': reset, '0': no reset)
H2	FLEXMON1	O	Serial 256 kbit/s monitor output signal (32 channels at 8 kbit/s), monitoring according to settings of the bits CONFLEXMON[7:4], e.g. Idle channel detection, 2010 Hz tone detected, 2100 Hz tone with or without phase reversal detected, double talk detected, no speech detected

Table 23 Channelwise Serial Interface (cont'd)

Pin No.	Symbol	I/O, PU/PD	Function
H1	FLEXMON2	0	Serial 256 kbit/s monitor output signal (32 channels at 8 kbit/s), monitoring according to settings of the bits CONFLEXMON[3:0], e.g. Idle channel detection, 2010 Hz tone detected, 2100 Hz tone with or without phase reversal detected, double talk detected, no speech detected
G1	CONVDISMON	0	Serial 256 kbit/s law conversion disable monitor output signal ('1': conversion disabled, '0': conversion enabled)
G2	CCMON	0	Serial 256 kbit/s clear channel transparency (64 clear) monitor output signal ('1': clear channel on, '0': clear channel off), same as DISMON='1' and CONVDISMON='1'

Table 24 Test Interface for Boundary Scan according to IEEE 1149.1

Ball No.	Symbol	I/O, PU/PD	Function
B2	TDI	I, PU	Test Data Input
A1	TDO	0	Test Data Output
B1	TMS	I, PU	Test Mode Select
C2	TCK	I, PU	Test Clock
C1	TRST	I, PU	Boundary Test Reset (active low, should be tied to '0' for normal operation)

Table 25 Test Interface

Pin No.	Symbol	I/O, PU/PD	Function
A3	KSCMOD	I, PD	SCAN MODE ENABLE pin for enabling of scan test. For normal operation this pin should be left unconnected or connected to V _{SS} .

Table 25 Test Interface (cont'd)

Pin No.	Symbol	I/O, PU/PD	Function
A4	KSCEN	I, PD	SCAN SHIFT ENABLE pin for shift enabling in scan test. For normal operation this pin should be left unconnected or connected to V _{SS} .
A2	TEST	I, -	Reserved for special tests (i.e. IDDQ, MBIST, etc.). For normal operation this pin must be connected to V _{SS} . Disables all pull resistances for IDDQ if set to '1'. Normal operation: '0'.

Note: The Test interface will be used by the manufacturer. For normal operation, this pins should be connected to the recommended fixed value in the table.

Table 26 Power Supply

Pin No.	Symbol	I/O, PU/PD	Function
E3,F4,J4,K3,L 4,L6,L9,L11,M 3,M5,M10,M1 2,C3,C5,C10, C12,D4,D6,D9 ,D11,E12,F11, J11,K12	VSS		Common ground rail
D3,E4,F3,G3, G4,L5,L7,L8,L 10,M4,D12,E1 1,F12,G11,G1 2,H11,H12,C4 ,C6,C7,C8,C9, C11,D5,H3,J3, L3,H4,K4,M6, D7,M7,D8,M8, M9,D10,K11, M11,J12,L12	VDD		Core power supply

Table 27 Unused Pins

Pin No.	Symbol	I/O, PU/PD	Function
A14,B3,B4,B 8,B9,C13,L1 3,M13,N13,J 14	NC		Common ground rail

Data Sheet 42 Rev. 2, 2004-07-28

3 Functional Description

3.1 Functional Block Diagram and Description

Figure 8 Block Diagram

The following paragraphs describe the functions of the SIDEC block diagramm shown in Figure 8.

3.1.1 Speech Control

The Speech Control analyzes the data from the PCM Input Interfaces and external inputs and supervises the functions of the other system components. As soon as the far end subscriber talks, the Adaptive Echo Estimation Unit is activated by the Speech Control. If the double talk condition is detected or a non speech signal with an adequate echo loss enhancement is identified by the Speech Control, the content of the Adaptive Echo Estimation Unit is frozen. Under specific circumstances a reset of the H-Register

Data Sheet 43 Rev. 2, 2004-07-28

(described in Section Figure 3.1.3) of the Adaptive Echo Estimation Unit might be necessary. The H-Register reset signal is also provided by the Speech Control.

3.1.2 Disabling Logic

Upon request of the Speech Control and depending on external inputs the Disabling Logic disables the Non Linear Processor and/or the Subtractor or even the complete Echo Canceller.

If the Speech Control Unit detects, that one of the following conditions is applied to the Echo Canceller, it will disable the device via the Disabling Logic:

- Disabling via 2100 Hz tone without phase reversal
- Disabling via 2100 Hz tone with phase reversal
- Disabling via 2010 Hz continuity check
- Disabling via PCM timeslot 16 Bit a, b, c or d according to ITU G. 704
- Disabling via Idle channel detection.
- Disabling of individual channels via external interfaces (μP, serial and/or UCC interface)

3.1.3 Adaptive Echo Estimation Unit

The Adaptive Echo Estimation Unit contains for each 8 bit signal sampled at 8 kHz memory for 512 / 1024 byte. This is equivalent to 64 / 128 ms end echo path delay. Depending on the end echo path delay of 64 or 128 ms the Adaptive Echo Estimation Unit processes 32 or 16 channels simultaneously, respectively. The corresponding 32 / 16 H-Register for each channel representing the pulse response of the complete echo path are also stored in the Adaptive Echo Estimation Unit. This information simplifies the detection of double speech. A highly sophisticated and patented algorithm guarantees fast and stable convergence even in the presence of near end speech.

The Adaptive Echo Estimation Unit is connected to the Microprocessor Interface in order to configure parameters of the algorithm and to read the content of the H-Register.

3.1.4 PCM Input/Output Interface

Each PCM Input/Output Interface contains a delay element, that is adjustable for max 125 μ s delay in 122 ns steps in order to align the corresponding PCM signal to the synchronizing pulse. Unless not bypassed, the delay from Receive In to Receive Out is fixed to one PCM Frame equivalent to 125 μ s. The signal Multiframe Begin is delayed accordingly to the send path delay.

Encoder to convert A- or μ -Law PCM signals to linear, and decoder to convert linear PCM signals to A- or μ -Law allow for channelwise Law Conversion (transcoding).

Data Sheet 44 Rev. 2, 2004-07-28

Offset adjustment is implemented at the output of the canceller. The attenuation of 0 dB, 2.5 dB or 6 dB is programmable by a register. The use of this feature requires that the cancelling function for the corresponding timeslot is enabled.

The complete bypassing of individual timeslots and connections from and to the processor interface with the internal canceller is provided for testing of cancelling timeslots.

The least significant bit in the send path can be transmitted transparently to the output if the corresponding external pin TSIGM is activated (CAS bit robbing).

The block PCM Input/Output Interface provides time multiplexing/demultiplexing for 16 or 32 timeslots. (depending on configuration, see section above). In 128 ms echo end path mode the selection of timeslots at the input is assigned as follows:

- Master: Timeslot0,1,2,3, 8,9,10,11,16,17,18,19, 24,25,26,27
- Slave: Timeslot4,5,6,7, 12,13,14,15,20,21,22,23, 28,29,30,31

The PCM Input/Output Interfaces are connected to the Speech Control Unit, Disabling Logic and the Microprocessor Interface.

3.1.5 Subtractor

The subtractor calculates the difference between the signal from the PCM Send In Interface and the artificial echo provided by the Adaptive Echo Estimation Unit. The subtractor is controlled by the Speech Control.

3.1.6 Non Linear Processor

The Non Linear Processor (NLP) limits the residual echo if only far end talk is present. Three programmable functions are available:

- Block echo and background noise.
- Replace echo and background noise by comfort noise with the level of the determined background noise.
- Clip the level of the echo and the background noise to the level of the background noise. (Experiments show that most people prefer this configuration)

The NLP is controlled by the Disabling Logic and Speech Control.

3.1.7 Microprocessor Interface

The Microprocessor Interface can operate in Intel and Motorola Mode. It provides access to the internal configuration, control states and monitor registers.

3.1.8 Universal Control and Communication Interface

The UCC Interface is a serial hardware interface for SIDEC control and supervision by other boards via a Microprocessor. A special feature of the SIDEC-UCC Interface is, that

Data Sheet 45 Rev. 2, 2004-07-28

certain controlling functions like the channelwise disabling or A/μ -Law conversion can be operated directly by the hardware without intervention of the microprocessor. This feature reduces the work load of the processor dramatically.

3.1.9 Watchdog Timer

A Watchdog timer is implemented to reset the on board processor if the software gets stuck in an undefined state as a result of a faulty operation. A reset condition is met if the microprocessor fails to write predefined values to the three watchdog registers in the correct sequence within 2 s. As long as the watchdog is active the SIDEC generates interrupts and/or reset pulses of 125 µs width with a period of 2 s.

3.1.10 Clock Control

The Clock Control supervises and generates all clock signals for proper operation of the ASIC hardware.

3.1.11 JTAG and RAM BIST

The JTAG (Joint Test Application Group) has been implemented according to IEEE 1149.1. A RAM BIST (Random Access Memory Built In Self Test) is also provided.

3.1.12 Test

The Test Unit controls the background test on disabled channels. A built in self test is used for testing internal RAMs. This test can be activated after switching on the supply voltage. The test unit also supervises the Clock Control Unit.

A notebook register allows the check of the µP Interface.

Within the Test Unit the registers for background testing of idling channels are implemented. In this test a pattern is input in the idling channel at Receive in and Send in and evaluated at the Send out port.

During normal operation the Test Unit supervises functions such as read out of levels, internal states and coefficients.

Data Sheet 46 Rev. 2, 2004-07-28

3.2 Description of Functional Features

3.2.1 Channelwise and Global A- and μ-Law Conversion

The SIDEC allows channel individual conversion. Figure 9 depicts the implementation of the different options for the A- to μ - or μ - to A-Law conversion. Depending on the requirements of the application two settings can be configured: Either global or channel individual law conversion.

Global A- to μ and μ to A-Law conversion:

If this modus is chosen by setting CONFLAW.CHIND='0' all 32 PCM channels are converted according to the settings of GALAWFE for the far end and GALAWNE for the near end. A '1' in GALAWFE and GALAWNE indicates that A-Law is used for the corresponding end. A '0' indicates usage of μ-Law. The conversion can be disabled channel individually by setting the CHCTRL0-31.CONVDIS = '1' via software. Law decoding/encoding is then carried out according to GCONVDISLAW. To activate the serial control signal and the UCC interface as disabling source for the PCM law conversion the bits CHCTRL0-31.ENPCTRL must be set to '0'.

Channel individual A- to μ- and μ- to A-Law conversion:

For channel individual conversion the user can configure independently for each channel whether A- to μ -, μ - to A- or no Law conversion is selected via setting IALAWNE for the near end and IALAWFE for the far end with the corresponding value for A- or μ -Law. The conversion can be disabled channel individually by setting the CHCTRL0-31.CONVDIS = '1' via software. Law decoding/encoding is then carried out according to CHCTRL0-31.CONVDISLAW. To activate the serial control signal and the UCC interface as disabling source for the PCM law conversion the bits CHCTRL0-31.ENPCTRL must be set to '0'.

Data Sheet 47 Rev. 2, 2004-07-28

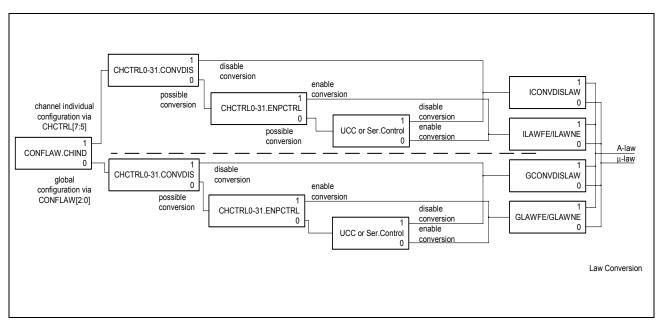


Figure 9 Explanation of Options for A- and μ-Law Conversion

3.2.2 Bypass and Disabling Functions

Figure 10 depicts the bypass and disabling functions of the SIDEC. They can be configured via UCC, Serial and μP Interface.

Setting NLPDIS ='1' (pin or register setting) leads to bypassing of the Non Linear Processor.

Setting BYPASS = '1' (Serial control signal, UCC or 2100 Hz tone via register settings) results in bypassing the Attenuator in the Receive Path as well as in bypassing the Subtractor, the Non Linear Processor and the Attenuator in the Send Path.

Disabling a channel or the complete canceller will result in a BYPASS function, a H-Register reset and a reset of the Speech Control Unit. A bypassed or disabled channel of the SIDEC can still be converted from A/μ - Law or vice versa.

If a Modem call is detected the user can define what action is related to the detection of a Modem call (2100 Hz with phase reversal or without reversal): bypassing, NLP bypassing, H-Register Reset or combination of the functions.

The 64 Clear mode is activated by bypassing and defining the same Law Conversion at near end and far end. In 64 Clear mode the signal is still passed through the frame alignment.

For testing purposes the canceller can be completly bypassed by setting SBYPASS and RBYPASS.

The Receive out signal can be input directly to the Send In port by setting the RSLOOP ='1'. The Send out signal can be input directly to the Receive in port by setting the SRLOOP ='1'. If both loops are configured only RSLOOP will be enabled in the SIDEC.

Data Sheet 48 Rev. 2, 2004-07-28

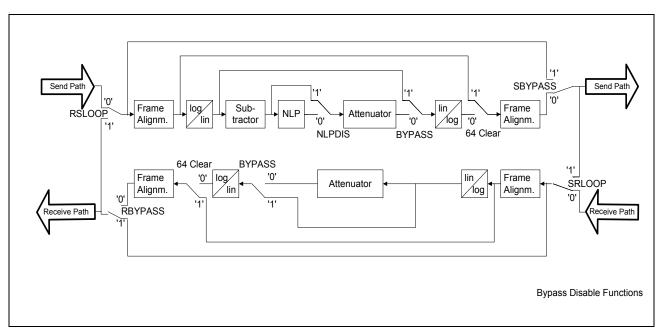


Figure 10 Bypass and Disabling Functions of the SIDEC

3.2.3 UCC Interface

The UCC Interface uses a clock frequency of 2048 kHz. The UCC Signal is structured into frames (period 125 µs) consisting of 32 channels (period 3.9 µs) and a multiframe consisting of 32 frames (period 4 ms). The multiframe is synchronized with the SYNCI Input pulse. The SIDEC reads and writes (tristate controlled) only the channels 0 of the frames. The 32 channels 0 of each multiframe are used to control and supervise the associated PCM channels. UCC Frame 0 corresponds to PCM channel 0, UCC Frame 1 corresponds to PCM channel 1, This relation is depicted in Figure 11. It is also possible to use one special UCC-Frame for a general purpose. With the registers UCCMFR, UCCALIGN and PHALIGN[7:6] the UCC channel 0 of frame 0 can be shifted to any channel and frame. Hence, up to 32 different devices can be connected in parallel to the UCC Interface.

The output signal UCCO is always in phase with the UCCI input signal.

Data Sheet 49 Rev. 2, 2004-07-28

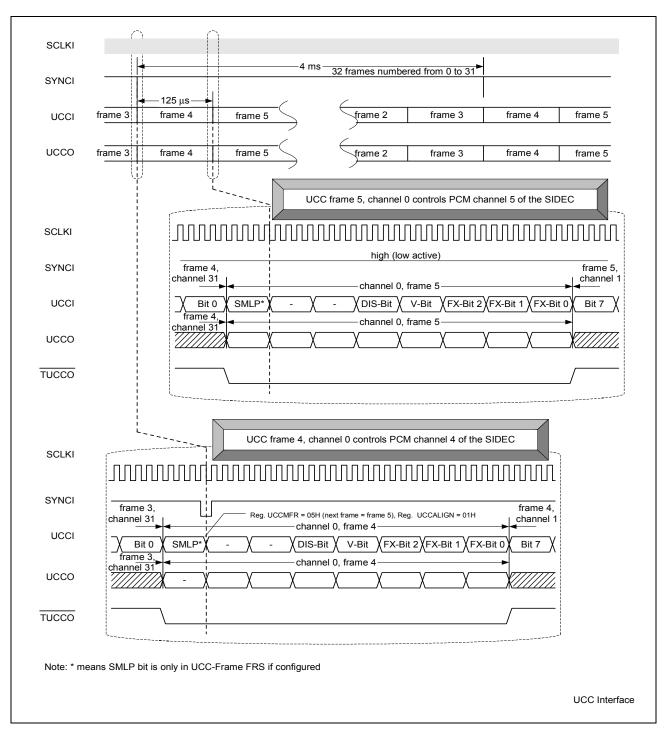


Figure 11 UCC Signal for control of PCM Signal

4 Operational Description

4.1 Pin Connection Diagram for SIDEC

Figure 12 illustrates an example for the pin connection of the SIDEC to an E1/T1 IC and to an interworking element IC.

The SIDEC is used to cancel the echo on the side of the FALC 56 which is the near end in this case. There are two INFINEON products in this Inter working unit connected to the SIDEC. The FALC serves as a frame and line interface component whereas the IWE8 PEB 4220 operates as an interworking element. For multiframe alignment in the IWE8, FRMFBX must have a correct timing relation to FRDATX. For this purpose the SIDEC adjusts the delay from the TMFBI input to the TMFBO output to the delay of the SI input to the SO output. For the support of the CAS-BR transparency the SIDEC passes the robbed bits that are indicated by the FALC via the TSIGM input directly through to the SO output by overwriting the computed value of the robbed bit with the value of the SI input.

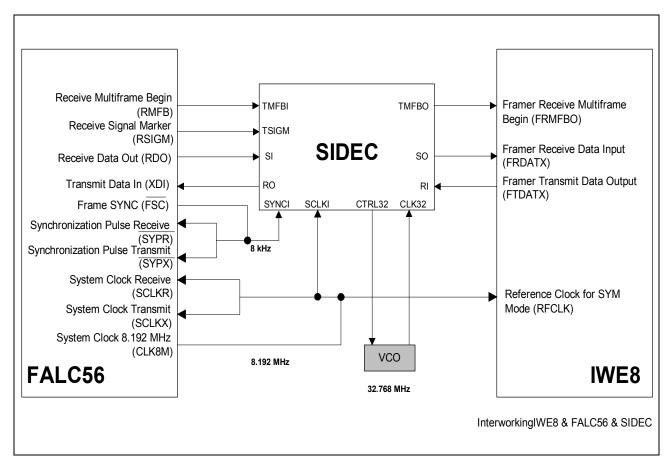


Figure 12 Internet Working Unit: SIDEC between a FALC and IWE8

Data Sheet 51 Rev. 2, 2004-07-28

4.2 Synchronization and Clock Modes

The SIDEC can be connected in different synchronization and clock modes. These modes can be used for several applications.

Basically there are two clock modes, slave and master clock mode (not to be mixed up with 128 ms master and slave mode). The internal clock system in master clock mode is automatically synchronized to the system clock by using an external 32.768 MHz VCO or by generating and deriving the system clock at output pin SCLKO directly from the CLK32 input. SIDEC in master clock mode provides a synchronization pulse at pin SDECO. This pulse can be used by a SIDEC in slave clock mode to synchronize its internal clock system to the system clock without the needs for additional external VCO.

Examples for this mode are the 128 ms delay application and the multiple SIDEC application, see also **Figure 17** and **Figure 18**.

CLK4O is 4.096 MHz system clock output for subsequent circuits, derived from SCLKI.

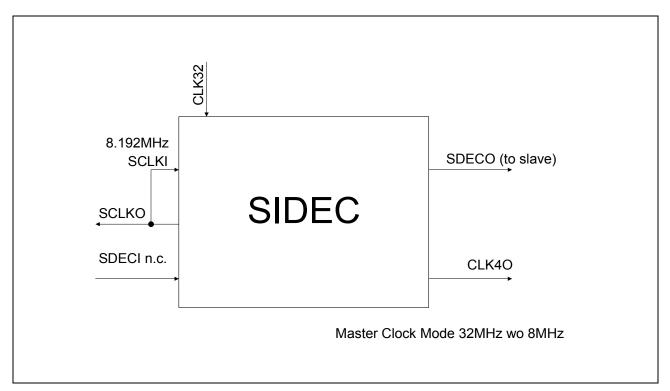


Figure 13 Master Clock Mode, ext. 32.768 MHz, no SDECI Clock

In **Figure 13** the system clock is reconnected from SCLKO to SCLKI in order to properly process the PCM signals. The system clock at pin SCLKO can also be provided for other devices. The SDECI pin is not connected in the master clock mode. A 32.768 MHz clock has to be provided by an external clock oscillator or other clock source on the system.

Data Sheet 52 Rev. 2, 2004-07-28

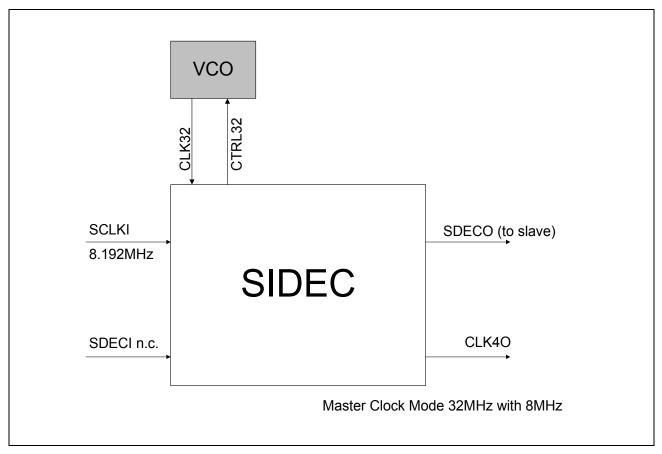


Figure 14 Master Clock Mode with External 8.192 MHz Clock

In the master clock mode with 8.192 MHz clock (Figure 14), the 32.768 MHz operating clock is supplied by the VCO. The SIDEC provides a controlling voltage for the VCO in order to synchronize the CLK32 to the system clock SCLKI.

SDECI is not connected and the SDECO can be connected to other SIDECs.

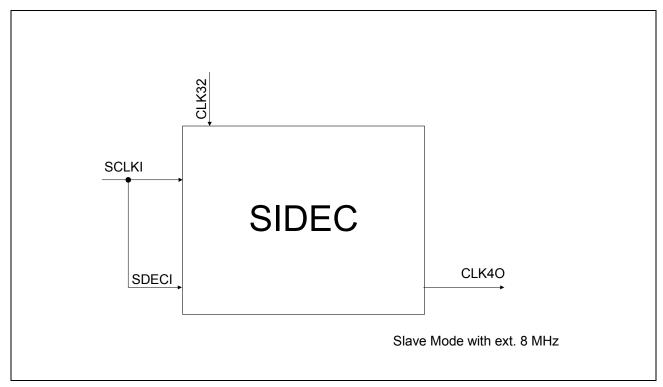


Figure 15 Slave Clock Mode with External 8.192 MHz and 32.768 MHz

In the slave clock mode the 8.192 MHz and the 32.768 MHz clock have to be synchronous and phase aligned (e.g. SCLKI has been derived from CLK32 by some external device). There is no internal synchronization between SCLKI and CLK32. SDECI is needed for correct phase alignment of SCLKI to the internal system clock.

CLK4O is a 4.096 MHz system clock output for subsequent circuits, derived from SCLKI

Data Sheet 54 Rev. 2, 2004-07-28

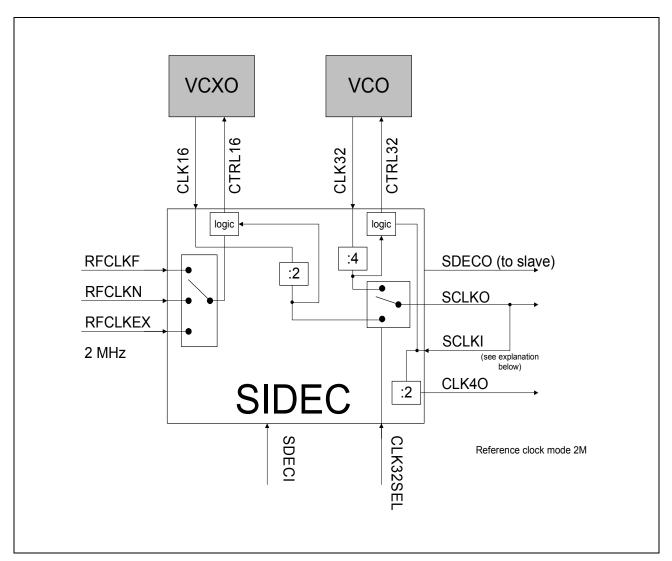


Figure 16 Reference Clock Mode with 2.048 MHz

In this mode a 2.048 MHz system clock is provided at either the RFCLKF, RFCLKN or the RFCLKEX pin. The VCXO and VCO supply the operating clocks for the SIDEC. SDECO can be connected to slave. The feedback from SCLKO to SCLKI in order to generate a control voltage for the 32 MHz VCO makes only sense if SCLKO is derived from CLK16. The SDECI initializes the counter.

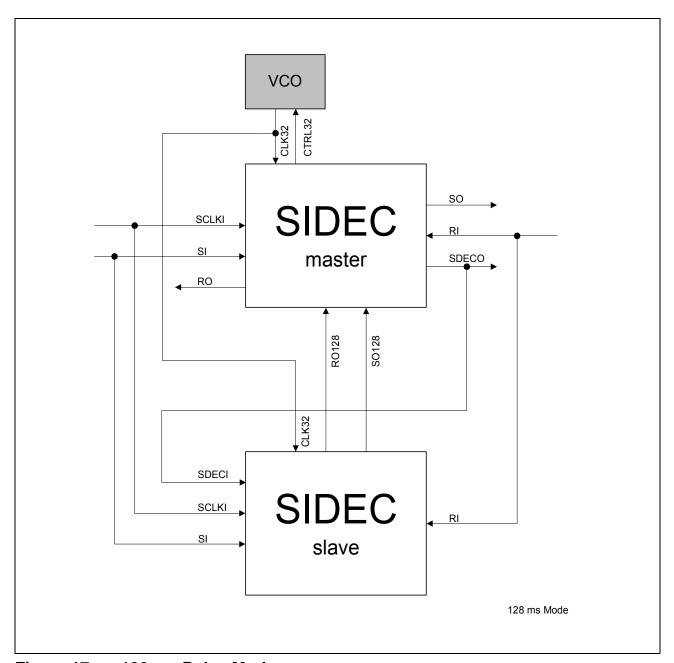


Figure 17 128 ms Delay Mode

The pin connection of a 128 ms master and slave SIDEC is shown in **Figure 17**. The SI and RI is supplied to both SIDECs. The RO and SO is provided by the master. The RO128 and SO128 signals are used to multiplex the 128 ms slave data into the PCM data stream outputs of the master.

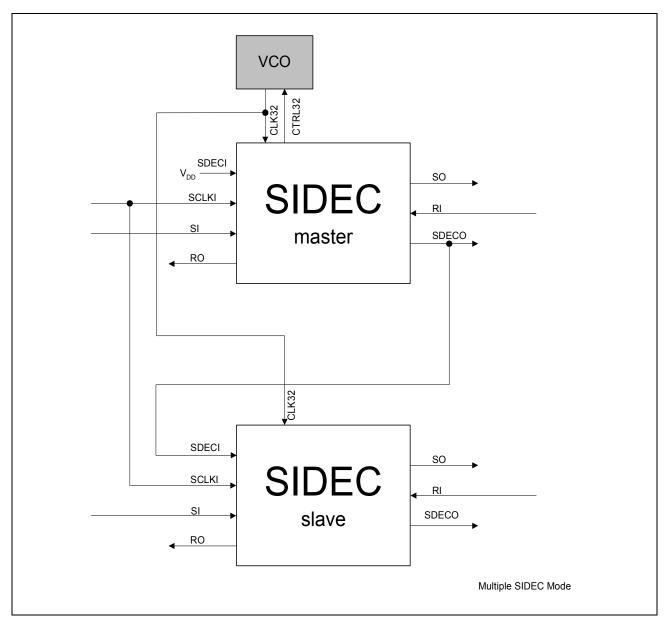


Figure 18 Multiple SIDEC

In multiple SIDEC mode the output SDECO of the clock master SIDEC is used to synchronize clock slave SIDECs to the system clock. In this application multiple E1/T1 lines can be echo cancelled, one E1/T1 line per SIDEC. Leave the SDECI of the master SIDEC open or connect it to ground $V_{\rm DD}$.

4.2.1 PCM Signal Timing and Frame Alignment

The SIDEC requires the MSB (bit7) first and the LSB (bit0) last as input.

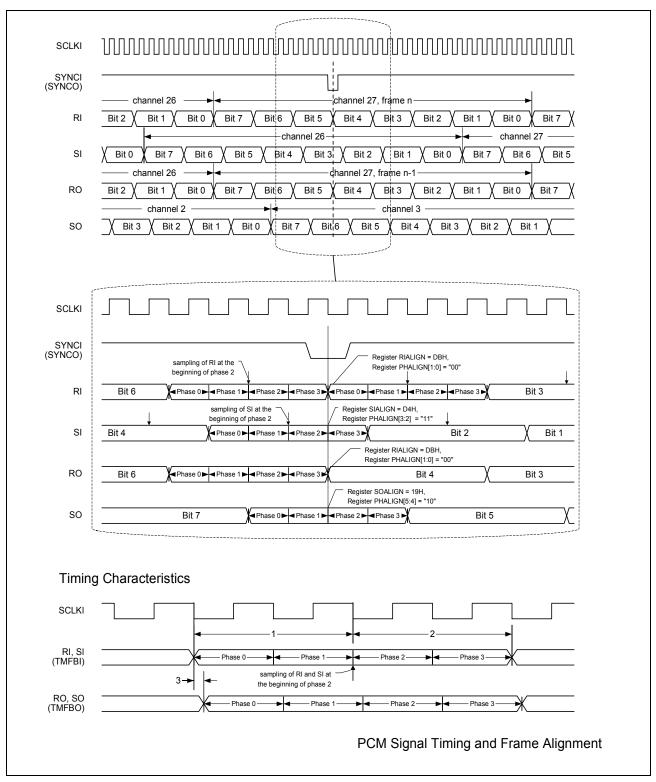


Figure 19 PCM Signal Timing and Frame Alignment

Note: Above values are examples only. PCM frame alignment with respect to the first detection of an active SYNCI (or SYNCO: If no SYNCI is applied, SYNCO takes over the part and role of SYNCI) with the falling edge of SCLKI can be configured by writing to the

Data Sheet 58 Rev. 2, 2004-07-28

registers RIALIGN, SIALIGN an SOALIGN. For finer adjustments, the valid bit phase of the PCM signals at the first detection of an active SYNCI with the falling edge of SCLKI can be configured by writing to the register PHALIGN. The configured frame and bit phase alignment always denotes the beginning of the ideal bit phase (no signal delay) at the falling edge of SCLKI.

PCM inputs are always sampled with the falling edge of SCLKI at the beginning of bit phase 2, outputs are clocked with the falling edge of SCLKI at the beginning of bit phase 0. Unless not bypased the PCM output RO has a fixed delay of one PCM frame (125 μ s) with respect to RI.

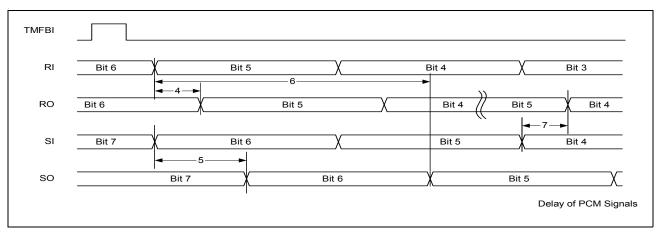


Figure 20 Delay of PCM Signals

Figure 21 illustrates the synchronization of the 2048 kBit/s PCM and UCC signal for a low active SYNCI signal with respect to the internal 8192 kHz SCLKI signal. If SYNCI is sampled with the falling edge of SCLKI (CONFCC.SSCLKEDGE='0') this edge is the synchronization point for PCM and UCC signals. If SYNCI is sampled with the rising edge of SCLKI (CONFCC.SSCLKEDGE='1') the next falling SCLKI edge is the synchronization point for PCM and UCC signals. The SYNCO signal may only be used instead of the SYNCI signal if the UCC Interface is not used

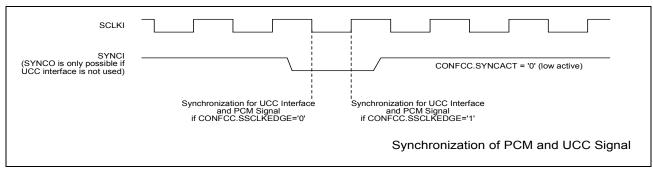


Figure 21 PCM and UCC Signal synhoronization to SCLKI and SYNCI

Data Sheet 59 Rev. 2, 2004-07-28

4.2.2 Timing of SYNCI and SYNCO

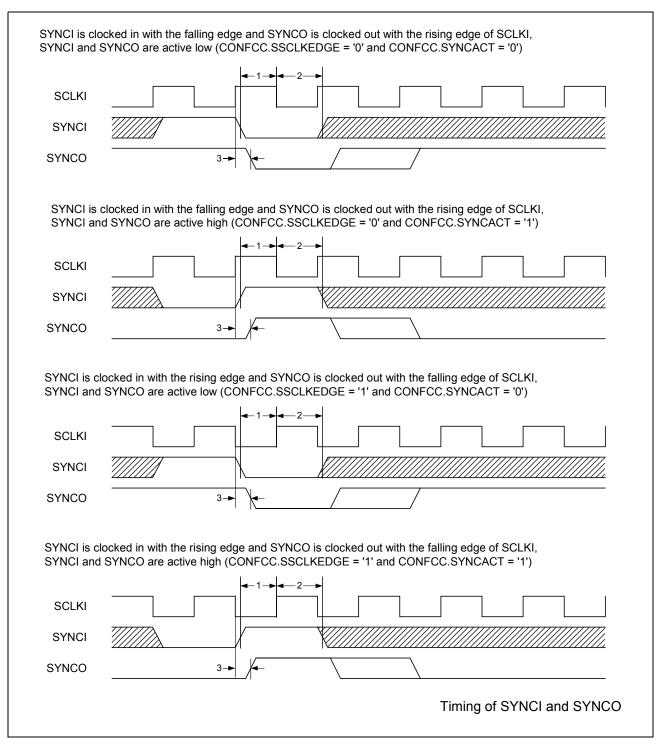


Figure 22 Timing of SYNCI and SYNCO

Figure 22 shows the timing of the synchronization pulses for different configurations.

Note: The duration of SYNCO pulse can be configured by register CONFCC.SYNCODUR to either one or two SCLKI (8.192 MHz) periods.

4.2.3 Clock Timing within External VCO Capture Range

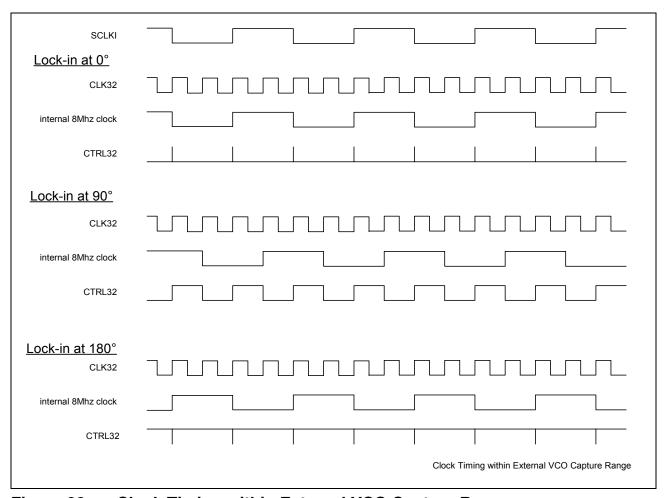


Figure 23 Clock Timing within External VCO Capture Range

In case a 32.768 MHz clock has to be generated and synchronized to the system clock at SCLKI, the signal at pin CTRL32 can be used to control an external VCO. The output at CTRL32 is the signal at SCLKI that is internally 'xored' with an internal 8.192 MHz clock that is derived from the signal pin CLK32 by division by 4. For proper operation of the SIDEC the system clock SCLKI and the internal 8.192 MHz clock must lock in within the capture range from 0° to 180°. CTRL32 can be inverted by bit CONFCC.INVCTRL32 for use of VCOs that increase the frequency with falling voltage.

The internal 8.192 MHz clock can be monitored at pin SCLKO with a delay of three CLK32 periods plus internal signal delay if pin CLK32SEL is set to logic '1'.

4.2.4 Serial Interface (Controlling and Monitoring) Timing

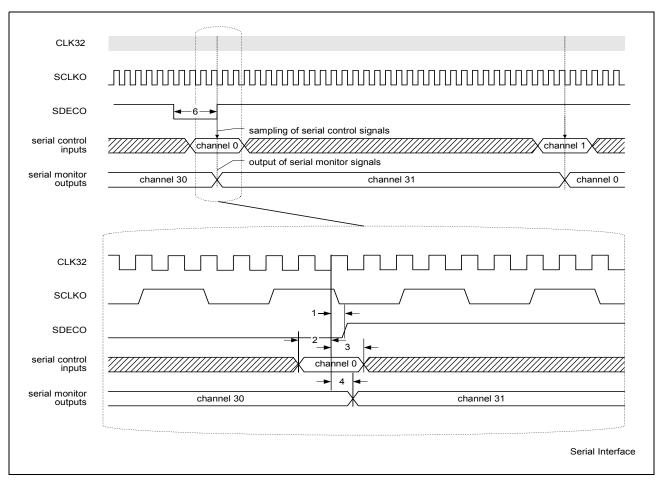


Figure 24 Serial Interface (Controlling and Monitoring) Timing

4.2.5 UCC Interface Signal Timing and Frame Alignment

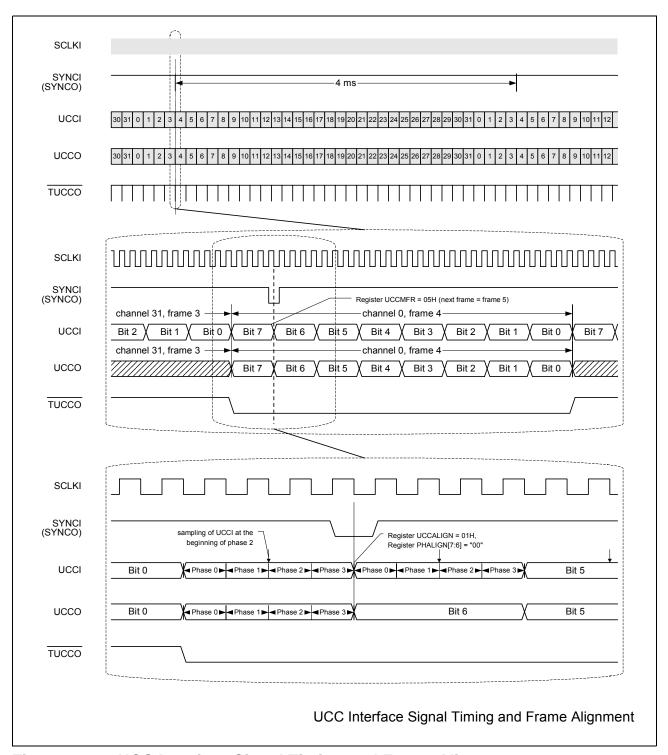


Figure 25 UCC Interface Signal Timing and Frame Alignment

Note: Above values are examples only. For the use of the UCC Interface a SYNCI signal with a period of 4 ms (equivalent to one multiframe) must be applied to the SIDEC. UCC frame and multiframe alignment with respect to the first detection of an active SYNCI with the falling edge of SCLKI can be configured by writing to the registers UCCALIGN

and UCCMFR. For finer adjustments, the valid bit phase of the UCC signals at the first detection of an active SYNCI with the falling edge of SCLKI can be configured by writing to the two MSBs of register PHALIGN.

The configured frame and bit phase alignment always denotes the beginning of the ideal bit phase (no signal delay) at the falling edge of SCLKI. If SYNCI is sampled with the falling edge of SCLKI (CONFCC.SSCLKEDGE='0') this edge is the synchronization point for PCM and UCC signals. If SYNCI is sampled with the rising edge of SCLKI (CONFCC.SSCLKEDGE='1') the next falling SCLKI edge is the synchronization point for PCM and UCC signals. This behavior is identical to the PCM signal behavior and illustrated in Figure 21 in Chapter 4.2.1

UCC inputs are always sampled with the falling edge of SCLKI at the beginning of bit phase 2, UCCO and TUCCO are clocked out with the falling edge of SCLKI at the beginning of bit phase 0. The value of register UCCMFR denotes the frame number of the next complete frame that starts with phase 0, bit 7, channel 0 **after** the first detection of an active SYNCI with the falling edge of SCLKI (see figure below).

Data Sheet 64 Rev. 2, 2004-07-28

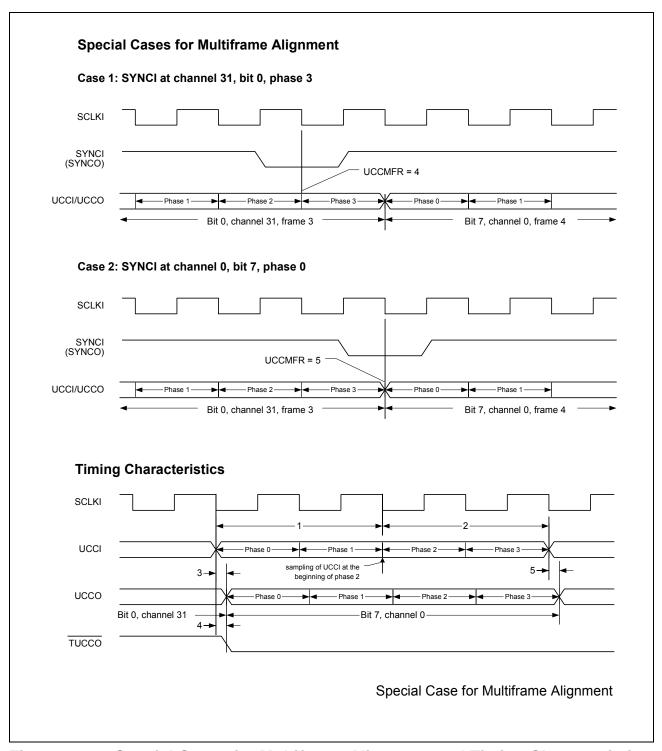


Figure 26 Special Cases for Multiframe Alignment and Timing Characteristics

Data Sheet 65 Rev. 2, 2004-07-28

4.2.6 Speech Highway Control Signals for CAS in T1 Systems

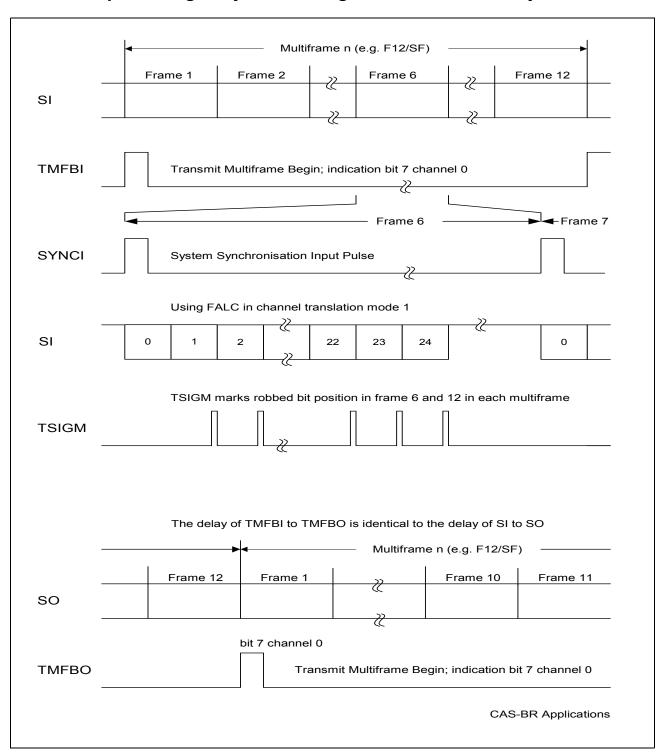


Figure 27 Timing of Supporting signals for CAS-BR Applications

Data Sheet 66 Rev. 2, 2004-07-28

4.2.7 Microprocessor Interface

The SIDEC Microprocessor Interface supports both, Intel and Motorola mode. In each mode the address can be provided either through the multiplexed address/data or a parallel address bus. In multiplexed mode the address is always sampled with the falling edge of the address latch enable signal on the lower 7 bits of the multiplexed address/data bus. hence, adresses from 00H to 7FH are possible.

Read and write access in Intel mode is controlled by the assigned read and write signals. In Motorola mode it is provided by the data strobe and read/write signal.

The chip select signal is internally simply 'ored' with the read and write signal in Intel mode and with the data strobe signal in Motorola mode, thus enabling register access through chip select controlled Microprocessor cycles.

For fast processors there is also a ready/acknowledgment signal provided in order to eliminate the need for processor configured wait state insertion.

To write a value in a write protected register the value 95H needs to be written in the register Write Protection.

4.3 Operational functions overview

4.3.1 Adaptive filter function

The adaptive filtering algorithm implemented in the SIDEC is some derivative form of the normalized LMS (least mean square) adaptive algorithm that utilizes an adaptive step range.

4.3.2 Filter

The SIDEC filter consist of a full-tapped 511 step transversal filter that can be limited to shorter impulse responses/echo delays for increased quality.

The filter coefficients can be fully monitored through the P-Interface.

4.3.3 Filter coefficient adaptation

Other than with ordinary LMS algorithms the SIDEC the filter coefficients (H-register) do not get updated directly with a fixed update step size, but instead the patented adaptive algorithm of the SIDEC utilizes so called auxiliary coefficients that adaptively control the update step size of (main) coefficients. This yields a much more stable operation and allows for the implementation of an additional fast convergence (turbo) mode that results in rapid convergence even in the presence of double talk.

Please note that turbo mode is a status that is individual for each single coefficient. The turbo mode indicator (monitor) only shows that at least one coefficient update works in turbo mode.

Data Sheet 67 Rev. 2, 2004-07-28

4.3.4 Stability / divergence protection

4.3.4.1 Coefficient damping

A configurable damping feature of main and auxiliary coefficients increases the algorithmical stability even further, thus preventing possible divergence even in difficult situation.

4.3.4.2 Auxiliary coefficient supervision

In order to prevent misadaptation or sudden divergence the auxiliary coefficients can be monitored for conspicuous patterns and the main filter adaptation limited to smaller step sizes.

4.3.4.3 Sinusoidal (non-voice) signal protection

In order to prevent possible divergence or misadaptation due to the presence of a (dominant) periodical signal (an unfortunate vulnerability inherent to all LMS algorithms) a flexible non-voice detector is built in to SIDEC.

4.3.4.4 Overcompensation protection

SIDEC can detect if it produces more echo than it receives and control the adaptive algorithm accordingly.

4.3.4.5 Low frequency RI superimposing

Low frequency (sawtooth) or DC components can be superimposed to the receive in signal in order to increase the stability or even the adaptability to certain waveforms. This is a legacy feature and no longer needed for the adaptive step range algorithm.

4.3.5 Non linear processing

SIDEC has a unique highly confined and flexible non linear processing capability that is highly integrated with adaptive filter functionality in order to suppress any noticeable residual echo in the case of no near end voice activity.

4.3.5.1 Background noise measurement

A quite elaborate and configurable function constantly monitors the near end background noise level.

4.3.5.2 Background noise insertion

SIDEC implements the ITU required NLP noise insertion settings plus one additional subjectively superior noise function with configurable adaptive signal levels.

Data Sheet 68 Rev. 2, 2004-07-28

In ITU comfort noise mode SIDEC inserts a white noise with a constant amplitude and sign generated by a PN-generator.

In the SIDEC unique subjective mode, SIDEC simply limits the outgoing SO signal to an amplitude defined by the adaptive background noise level.

4.3.5.3 **NLP control**

The NLP activation (background noise insertion instead of echo compensated near end signal) of the SIDEC is controlled through sophisticated functions by several conditions that are tightly coupled with the adaptive filtering function and double talk conditions. The user can control these functions through a multitude of configuration settings.

4.3.6 Double talk detection

SIDEC features a configurable multi-step double talk detection that is needed by several other functions of the device.

4.3.7 Voice activity detection

SIDEC can detect far and near end signal activity for controlling of the echo cancelling functionality.

4.3.8 Offset compensation

For optimization of the adaptive filter algorithm SIDEC removes DC components from the SO signal. This offset-compensation function is also applied to the SI-signal to ensure AC only level measurement.

4.3.9 Disable tone detection functions

SIDEC can be configured to several operational states on the detection of the following "disable" tone signals:

- 2100 Hz (G.164)
- 2100 Hz with phase reversal (G.165)
- 2000 Hz (SS7 continuity check tone)

All of the detectors for the above signal forms can be configured to the special needs of the implemented telecommunications system.

4.3.10 Other disable event detection functions

- Idle pattern detection (ITU confirming and flexibly configurable)
- TS16 evaluation (in E1 system)
- External serial signal (FLEXCTRL)
- Direct register control through the P-Interface.

Data Sheet 69 Rev. 2, 2004-07-28

4.4 Operational functions configuration

This sections shows you the correlation of the different SIDEC configuration registers settings with the SIDEC operational functions and the effect of the settings on these functions.

For further explanation or the exact values please refer to the detailed register description.

4.4.1 Adaptive filter function

The following tables give some more insight on the configuration options of the adaptive filters.

4.4.1.1 Filter

Table 28 Filter Parameter

Register	Addr.	Value	Mod.	Effect	
AEEPD	72H	DELAY	Up increase the (end echo path) filter length		
			Down	decrease the (end echo path) filter length	
ACONF	79H	EMAF	0	SIDEC works up to 0 dB echo attenuation	
			1	SIDEC works up to 6 dB echo attenuation, granularity of the filter is doubled, quality of artificial echo better	

The transversal filter can be modified in length (amount of taps) and maximum coefficient value / granularity.

ACONF.EMAF set to 1 results in an additional attenuation of the artificial by 6 dB, thus the values of the coefficients are in bigger and the echo filter model more accurate.

4.4.1.2 Filter coefficient Adaptation Speed

Table 29 Filter coefficient adaptation speed adjustment

Register	Addr.	Value	Mod.	Effect	
AFSTC	71H	ACSPT	Up decrease damping effect on aux. coef., convergence speed "Up", stability "Down"		
			Down	increase damping effect on aux. coef., convergence speed "Down", stability "Up"	
		CSPT	Up	decrease damping effect on main coef., convergence speed "Up", stability "Down"	

Data Sheet 70 Rev. 2, 2004-07-28

Table 29 Filter coefficient adaptation speed adjustment (cont'd)

Register	Addr.	Value	Mod.	Effect	
			Down	increase damping effect on main coef., convergence speed "Down", stability "Up"	
ATMAT	77H	TURBO	Up	convergence speed "Down", stability "Up"	
			Down	convergence speed "Up", stability "Down"	

Modification of the AFSTC has some dramatic effect on stability and convergence speed, be careful with those settings.

Modification of the turbo threshold is not as severe and a good means for algorithm fine-tuning.

The lower the turbo threshold the faster the turbo mode for the affected coefficient will be activated resulting in faster convergence.

4.4.1.3 Stability / divergence protection

For stability please see also the previous paragraph

Table 30 Coefficient damping

Register	Addr.	Value	Mod.	Effect
AFSTC	71H	ACSP T	Up	stability "Down", convergence speed "Up"
			Down	stability "Up", convergence speed "Down"
		CSPT	Up	stability "Down", convergence speed "Up"
			Down	stability "Up", convergence speed "Down"

Table 31 Auxiliary coefficient supervision

Register	Addr.	Value	Mod.	Effect	
AACSC	78H	ACSCTH	Up	stability "Down", convergence speed "Up", if ACSCTH > 0	
			Down	stability "Up", convergence speed "Down", if ACSCTH > 0	
		ACSTH	Up	stability "Down", convergence speed "Up", if ACSCTH > 0	
			Down	stability "Up", convergence speed "Down", if ACSCTH > 0	

Data Sheet 71 Rev. 2, 2004-07-28

Table 31 Auxiliary coefficient supervision (cont'd)

Register	Addr.	Value	Mod.	Effect
		ACSEFF ECT	0	stability "Down", convergence speed "Up", if ACSCTH > 0
			1	stability "Up", convergence speed "Down", if ACSCTH > 0
ATMAT	77H	TURBO	Up	stability "Down", if AACSC.ACSCTH > 0
			Down	stability "Up", if AACSC.ACSCTH > 0

AACSC modifications mainly prevent misadaptation and divergence on periodical signals. The effect is not very strong but noticeable. Be careful not to unnecessarily activate the feature, since its effect on other functions has not been elaborately evaluated. The strongest setting for the AACSC register would be 84H and should be avoided. For fine-tuning play with the turbo-threshold. Lowering the turbo-threshold might increase convergence speed and stability if the auxiliary coefficient supervision feature is activated.

Table 32 Sinusoidal (non-voice) signal protection

Register	Addr.	Value	Mod.	Effect
VDFCTRL	76H	VDFRELEN	0	stability "Down", ERLE "Up"
			1	stability "Up", ERLE "Down",
		VDFREL	Up	stability "Down", ERLE "Up", if VDFRELEN = 1
			Down	stability "Up", ERLE "Down", if VDFRELEN = 1
		VDFSOL	Up	stability "Down", ERLE "Up"
			Down	stability "Up", ERLE "Down"
AVDDI	77H	VDMAXINTER VAL	Up	stability "Down", convergence speed "Up", if activated
			Down	stability "Up", convergence speed "Down", if activated
		VDINTERVAL	Up	stability "Down", convergence speed "Up", if activated
			Down	stability "Up", convergence speed "Down", if activated
AVDHG	74H	VDSODELAY	Up	stability "Up", convergence speed "Down", if activated

Data Sheet 72 Rev. 2, 2004-07-28

Table 32 Sinusoidal (non-voice) signal protection (cont'd)

Register	Addr.	Value	Mod.	Effect
			Down	stability "Down", convergence speed "Up", if activated
		VDDIFF	Up	stability "Up", convergence speed "Down", if activated
			Down	stability "Down", convergence speed "Up", if activated
AVDCI	75H	VDCI	Up	stability "Up", convergence speed "Down", if activated
			Down	stability "Down", convergence speed "Up", if activated
CONFSCU 1	12H	ADAPTFAST	Up	ERLE "Down", NLP, DT detection slow
			Down	ERLE "Up", NLP, DT detection slow
		ADAPTSLOW	Up	ERLE "Down", NLP, DT detection slow
			Down	ERLE "Up", NLP, DT detection slow

VDFCTRL defines the effects on the detection of a non-voice event. For stability reasons the adaptive algorithm should be frozen (VDFCTRL. VDFRELEN), when the echo attenuation reaches the specified level in VDFCTRL.VDFREL. Unfortunately this might lead to a locking of the adaptive algorithm, if the SIDEC has adapted to a periodical signal changes it's frequency, or if the SIDEC has momentarily misadapted to a periodical signal and the H-registers are frozen due to the reaching of the specified attenuation level and the presence of the periodical signal. In order to prevent this situation it is recommended to let the attenuation meters adapt slowly by modifying the ADAPTFAST and ADAPTSLOW values of the CONFSCU1 register and to set VDFCTRL. VDFREL to a high value in order to give the canceller the chance to converge better sufficiently well before getting frozen.

The AVDDI, AVDHG and AVDCI registers define the sensitivity and speed with which periodical signals are detected. Detection intervals longer than 64ms are not recommended in 128 ms mode in order to keep the H-register stable on sinusoidal signals. Be careful with sensitivity settings that are too aggressive since this might jeopardize your convergence speed and ERLE.

Table 33 Overcompensation protection

Register	Addr.	Value	Mod.	Effect
CONFSCU4	15H	OCINC	Up	OC detection sensitivity "Up"
			Down	OC detection sensitivity "Down"
		OCDEC	Up	OC detection sensitivity "Down"
			Down	OC detection sensitivity "Up"
		SIADD	Up	OC detection sensitivity "Down"
			Down	OC detection sensitivity "Up"
		OCAMR ES	0	OC detection effect "Down"
			1	OC detection effect "Up"
		OCHRE S	0	OC detection effect "Down"
			1	OC detection effect "Up"

SIDEC detects an overcompensation if the level of the supposedly echocancelled output signal SO is higher than the SI input signal level by an through CONFSCU4.SIADD configured amount for a sufficiently long period that can be configured through CONFSCU4.OCIND and CONFSCU4.OCDEC.

In case an overcompensation the effect can be configured with CONFSCU4. OCAMRES or CONFSCU4.OCHRES.

Low frequency RI superimposing

Former implementations of the LMS algorithm without adaptive step ranging required superimposing of some low frequency components in the RI signals in order to limit the canceller degree of freedom in adapting to the end echo path, which resembles a bandpass filter.

With the introduction of the new adaptive step range algorithm this feature is no longer needed but still offered for legacy reasons. Please refer to the register description of the ASTOC register for details. It is recommended to keep this registers at it's default value 00H (feature disabled).

4.4.2 Non linear processing

The following tables will give some hint on the configuration of the non linear processor.

 Table 34
 Background noise measurement

Register	Addr.	Value	Mod.	Effect
CONFSCU7	18H	NOISEINC	Up	comfort noise level "Up"
			Down	comfort noise level "Down"
		BNINC	Up	comfort noise level "Up", comfort noise level stability "Down"
			Down	comfort noise level "Down", comfort noise level stability "Up"
		BNDEC	Up	comfort noise level "Down", comfort noise level stability "Down"
			Down	comfort noise level "Up", comfort noise level stability "Up"
CONFSCU8	19H	BNMAXSL	Up	comfort noise level stability "Down", risk of level too low "Down"
			Down	comfort noise level stability "Up", risk of level too low "Up"
		BNMAXRL	Up	comfort noise level stability "Down", risk of level too low "Down"
			Down	comfort noise level stability "Up", risk of level too low "Up"

The final resulting inserted comfort noise level can be configured mainly by modifying the value CONFSCU7.NOISEINC.

Please keep in mind that ITU comfort noise will generate a constant amplitude signal, thus the inserted noise level will be generally 3dB higher than the measured level, it is recommended to set CONFSCU7.NOISEINC to 2H (-3dB) to compensate for this behavior.

In subjective mode the SO amplitude will simply be limited to the measured background noise level, in this case the measured level should be increased by 6dB (CONFSCU7.NOISEINC = 8H), which produced the subjectively best background noise signal. Please note that in this case the measured background noise level at the SO output heavily depends on the noise signal form that is inserted at SI.

CONFSCU7.BNINC and CONFSCU7.BNDEC can be modified for fine-tuning of the BN measurement. Any change has only little effect.

CONFSCU8. BNMAXSL and CONFSCU8. BNMAXRL only limit the range of the SI(SO) and RI signal levels for which background noise level measurement is enabled. If for example the level louder signal of SI or SO is higher than CONFSCU8. BNMAXSL the

current signal is not considered to being a background noise and the background noise level measurement will be switched off.

CONFSCU8. BNMAXRL behaves the same way for the RI signal and may be lowered in order to reduce the effect of residual echo on the quality of the BN measurement.

Table 35 Background noise insertion

Register	Addr.	Value	Mod.	Effect
CONFPCM	30H	NLPITU	1	ITU comfort noise (white noise, constant amplitude)
			0	subjective comfort noise (amplitude limited)
		NLPMOD	1	ITU bandlimited noise with constant amplitude
		(if NLPITU = '1')	0	output level is 0 (dead line)

Please see also the previous paragraph for details.

The above table shows what kind of signal can be configured to be inserted at SO in the case of NLP activation.

5 Register Description

5.1 Detailed Register Description

In the following section the meaning and addresses of the registers of the SIDEC are described, The addresses and reset values are given in Hex-Code indicated by a subsequent capital H. A number '0' or '1' written in bold type denotes the reset value of the corresponding bit.

To write a value in a write protected register the value 95H needs to be written in the register Write Protection.

5.1.1 Register Map

The following table lists all registers. The table displays the register name, the abbreviation, the reset value, the read/write mode and the page number with the detailed description. The registers are sorted by addresses.

Addr	Short Name	Full name	R/W	Res.	page
00H	NOTEBOOK	Notebook	R/W	00H	83
01H	WP	Write Protection	W	NOT 95H	85
02H	WDG1	Watchdog 1	W	3311	85
03H	WDG2	Watchdog 2	W		86
04H	WDG3	Watchdog 3	W		86
05H	UPIO	μ P-I/O -Pin extension	R/W	0FH	83
06H	PCMCTRL	PCM Bypass and loop Control	W	00H	86
07H	IRMASK	Interrupt Mask	W	7FH	85
08H	IRREQ	Interrupt- Req uest	R		118
09H	CLKSTAT	Clock-Status	R		118
0AH	RAMBIST	RAMBIST	R/W	00H	83
0BH	CONFCC	Configuration of Clock Control unit	W	00H	109
0CH	FSLIPIV	Frame slip safety interval	W	28H	109
0DH	RIALIGN	Receive input frame alignment	W	00H	110
0EH	SIALIGN	Send input frame alignment	W	00H	110
0FH	SOALIGN	Send output frame alignment	W	00H	110

Data Sheet 77 Rev. 2, 2004-07-28

Addr	Short Name	Full name	R/W	Res. value	page
10H	UCCALIGN	UCC frame alignment, write protected	W	00H	111
11H	PHALIGN	Bit Ph ase align ment for RI, SI, SO and UCC	W	00H	111
12H	CONFSCU1	Configuration of speech control unit 1	W	69H	101
13H	CONFSCU2	Configuration of speech control unit 2	W	97H	101
14H	CONFSCU3	Configuration of speech control unit 3	W	A4H	102
15H	CONFSCU4	Configuration of speech control unit 4	W	A7H	103
16H	CONFSCU5	Configuration of speech control unit 5	W	84H	103
17H	CONFSCU6	Configuration of speech control unit 6	W	2AH	104
18H	CONFSCU7	Configuration of speech control unit 7	W	8AH	104
19H	CONFSCU8	Configuration of speech control unit 8	W	EEH	105
1AH	CONFSCU9	Configuration of speech control unit 9	W	44H	105
1BH	CONFSCU10	Configuration of speech control unit 10	W	C0H	106
1CH	CONFPSD	Conf iguration of 2100 Hz tone p hase s hift d etector	W	43H	107
1DH	CONFSS7	Configuration of SS7 continuity check tone detection	W	00H	108
1EH	MONSIL	Monitor send input level	R		123
1FH	MONSOL	Monitor send output leve	R		123
20H	MONRIL	Monitor of receive input level	R		124
21H	MONOFSI	Monitor offset in send path input	R		124
22H	MONOFSO	Monitor offset in send path output	R		124
23H	MONAEL	Monitor artificial echo level	R		124
24H	MONBNL	Monitor background noise level	R		124
25H	MONERL	Monitor Echo return loss	R		125
26H	MONCL	Monitor combined loss without NLP	R		125
27H	MONNLPTHL	Monitor NLP threshold level	R		125
28H	MONOCDT	Monitor overcompensation and double talk hang-over time	R		125

Addr	Short Name	Full name	R/W	Res. value	page
29H	MONSI	Mon itor s end i nput si gnal (A-/μ-Law encoded)	R		122
2AH	MONSO	Mon itor s end o utput signal (A-/μ-Law encoded	R		122
2BH	MONRI	Mon itor of r eceive i nput signal (A-/μ- Law encoded	R		122
2CH	MONSTAT1	Monitor of internal/external control states 1	R		125
2DH	MONSTAT2	Monitor of internal/external control states 2	R		126
2EH	MONSTAT3	Monitor of internal/external control states 3	R		126
2FH	CTRLTSMON	Control of TS to be monitored	W	00H	84
30H	CONFPCM	Global Conf iguration of PCM outputs	W	03H	86
31H	CONFTS16	Configuration of TS16 CAS Evaluation for E1 frames	W	12H	94
32H	CONFIDLE	Configuration of IDLE Detection	W	1DH	93
33H	IDLEMASK	IDLE detection bit compare MASK	W	00H	93
34H	IDLEPATTERN	Idlepattern	W	55H	94
35H	ATE	Address of Te st-channel	W	00H	98
36H	SFATSES	Super frame alarm and requested timeslot en/disable status	R		119
37H	TESTTIMER	μP Test and Timer	W	00H	98
38H	CTRLTEST	Control of test channel	W	00H	99
39H	TSGSPP	Test signal generator for send path pattern	W	55H	99
ЗАН	TSGRPP	Test signal generator for receive path pattern	W	55H	100
звн	HTIM	H igh-Byte for Tim er	W	00H	100
зсн	LTIM	Low-Byte for Tim er	W	00H	101
3DH	SOTP	Send path output test pattern	R		119
3EH	TESTSTAT	Background test status signals	R		119

Addr	Short Name	Full name	R/W	Res. value	page
3FH	CONFLAW	Global conf iguration of PCM encoding law	W	00H	87
40H	CHCTRL0	Individual ch annel c on trol 0	W	00H	88
41H	CHCTRL1	Individual ch annel c on trol 1	W	00H	88
42H	CHCTRL2	Individual ch annel c on trol 2	W	00H	88
43H	CHCTRL3	Individual ch annel c on trol 3	W	00H	88
44H	CHCTRL4	Individual ch annel c on trol 4	W	00H	88
45H	CHCTRL5	Individual ch annel c on trol 5	W	00H	88
46H	CHCTRL6	Individual ch annel c on trol 6	W	00H	88
47H	CHCTRL7	Individual ch annel c on trol 7	W	00H	88
48H	CHCTRL8	Individual ch annel c ontrol 8	W	00H	88
49H	CHCTRL9	Individual ch annel c ontrol 9	W	00H	88
4AH	CHCTRL10	Individual ch annel c ontrol 10	W	00H	88
4BH	CHCTRL11	Individual ch annel c ontrol 11	W	00H	88
4CH	CHCTRL12	Individual ch annel c ontrol 12	W	00H	88
4DH	CHCTRL13	Individual ch annel c ontrol 13	W	00H	88
4EH	CHCTRL14	Individual ch annel c ontrol 14	W	00H	88
4FH	CHCTRL15	Individual ch annel c ontrol 15	W	00H	88
50H	CHCTRL16	Individual ch annel c ontrol 16	W	00H	88
51H	CHCTRL17	Individual ch annel c ontrol 17	W	00H	88
52H	CHCTRL18	Individual ch annel c ontrol 18	W	00H	88
53H	CHCTRL19	Individual ch annel c ontrol 19	W	00H	88
54H	CHCTRL20	Individual ch annel c ontrol 20	W	00H	88
55H	CHCTRL21	Individual ch annel c ontrol 21	W	00H	88
56H	CHCTRL22	Individual ch annel c on trol 22	W	00H	88
57H	CHCTRL23	Individual ch annel c on trol 23	W	00H	88
58H	CHCTRL24	Individual channel control 24	W	00H	88
59H	CHCTRL25	Individual ch annel c ontrol 25	W	00H	88
5AH	CHCTRL26	Individual channel control 26	W	00H	88
5BH	CHCTRL27	Individual ch annel c ontrol 27	W	00H	88

Addr	Short Name	Full name	R/W	Res. value	page
FCH	CHCTRL28	Individual ch annel c on trol 28	W	0011	88
5CH				00H	
5DH	CHCTRL29	Individual channel control 29	W	00H	88
5EH	CHCTRL30	Individual channel control 30	W	00H	88
5FH	CHCTRL31	Individual ch annel c ontrol 31	W	00H	88
60H	CONFUCC	Configuration of UCC Interface	W	00H	94
61H	UCCMFR	UCC Multiframe Alignment	W	00H	96
62H	UCCFRS	Selection of the special UCC Frame FRS	W	00H	96
63H	WRUCC	Write/Read UCCI	W	00H	97
64H	DORAM	Data Output RAM	W	00H	97
65H	IMASKFRS	Interrupt Mask for the special UCC frame FRS	W	00H	97
66H	IMASKFRN	Interrupt Mask for channel individual UCC frames (FRN)	W	00H	98
67H	DIRAM	requested Data Input RAM value	R		120
68H	UCCOLD	Changed UCC input data old value	R		120
69H	UCCNEW	Changed UCC input data new value	R		120
6AH	UCCSTAT	UCC status	R		120
6BH	SCMASK	Serial Control Interface Mask	W	3FH	90
6CH	CONFFLEX SCTR	Configuration of the flexible serial control signal	W	00H	90
6DH	CONFFLEXUCC	Configuration of the flexible UCC control bit (FX-Bit)	W	00H	91
6EH	STATUS	Status	R		118
6FH	CONFFLEXMON	Conf iguration of Flex ible Mon itor Signals	W	FEH	91
70H	ASTOC	AFI Saw-Tooth and Offset Characteristic	W	00H	111
71H	AFSTC	AFI Filter Spring Timer Configuration	W	44H	112
72H	AEEPD	AFI End Echo Path Delay	W	0FH	112
73H	AVDDI	AFI Voice Detection, Detection Intervals	W	77H	113

Addr	Short Name	Full name	R/W	Res. value	page
74H	AVDHG	AFI Voice Detection, Hysteresis and Gap	W	74H	114
75H	AVDCI	AFI Voice Detection Count Init	W	85H	115
76H	VDFCTRL	Voice Detection Freeze Control	W	В4Н	107
77H	ATMAT	AFI Turbo Mode Activation Threshold	W	08H	115
78H	AACSC	AFI Auxiliary Coefficient Supervision Configuration	W	00H	115
79H	ACONF	AFI Configuration	W	10H	116
7AH	AFCMC	AFI Filter Coefficients Monitoring Control	W	00H	117
7BH	AFCD1	AFI Filter Coefficient Data 1	R		121
7CH	AFCD2	AFI Filter Coefficient Data 2	R		121
7DH	AFCD3	AFI Filter Coefficient Data 3	R		122

5.1.2 Read-Write-Register

NOTEBOOK[7:0] (Addr.: 00H): Notebook, write protected, Reset value = 00H

| NOTE |
|---------|---------|---------|---------|---------|---------|---------|---------|
| BOOK[7] | BOOK[6] | BOOK[5] | BOOK[4] | BOOK[3] | BOOK[2] | BOOK[1] | BOOK[0] |

NOTEBOOK[7:0] Read/Write register for testing of the μP interface, content without effect, write protected

UPIO[7:0] (Addr.: 05H): μ **P-I/O**-Pin extension, Reset value = 0FH

UPIO3	UPIO2	UPIO1	UPIO0	TUPIO3	TUPIO2	TUPIO1	TUPIO0		
UPIO3	If TUPIO3='1': Value from Pin UPIO3								
	If ⁻	TUPIO3='0'	: Value tha	t is output a	at Pin UPIC)3			
UPIO2	If ⁻	TUPIO2='1'	: Value from	m Pin UPIC)2				
	If T	TUPIO2='0'	: Value tha	t is output a	at Pin UPIC)2			
UPIO1	If T	TUPIO1='1'	: Value from	m Pin UPIC)1				
	If ⁻	TUPIO1='0'	: Value tha	t is output a	at Pin UPIC)1			
UPIO0	If T	TUPIO0='1'	: Value from	m Pin UPIC	00				
	If ⁻	TUPIO0='0'	: Value tha	t is output a	at Pin UPIC	00			
TUPIO3		state contr		PIO3					
		: Pin UPIO	•						
	'0':	: Pin UPIO	3 is output						
TUPIO2	Tri	state contr	ol for Pin U	PIO2					
		: Pin UPIO2	•						
		: Pin UPIO2	•						
TUPIO1		state contr		PIO1					
		: Pin UPIO	•						
		: Pin UPIO	•						
TUPIO0		state contr		PIO0					
		: Pin UPIO	•						
	'0':	: Pin UPIO) is output						

RAMBIST[5:0] (Addr.: 0AH): **RAM BIST,** write protected, Reset value = 00H

-	-	RUN	CUFAIL	AFI3	AFI2	AFI1	AFI0
		BIST		FAIL	FAIL	FAIL	FAIL

RUNBIST '1': set by μP: activates RAMBIST and signals running RAMBIST

'0': set by hardware: signals that RAMBIST is finished (not running),

CUFAIL	the value RESULT is valid, if the RAMBIST was activated before '1': RAMBIST of central unit failed, i.e. a RAM error was detected '0': RAMBIST of central unit successful: no error in RAM
AFI3FAIL	'1': RAMBIST of adaptive filter unit 3 failed, i.e. a RAM error was detected '0': RAMBIST of adaptive filter unit 3 successful: no error in RAM
AFI2FAIL	'1': RAMBIST of adaptive filter unit 2 failed, i.e. a RAM error was detected '0': RAMBIST of adaptive filter unit 2 successful: no error in RAM
AFI1FAIL	'1': RAMBIST of adaptive filter unit 1 failed, i.e. a RAM error was detected '0': RAMBIST of adaptive filter unit 1 successful: no error in RAM
AFI0FAIL	'1': RAMBIST of adaptive filter unit 0 failed, i.e. a RAM error was detected '0': RAMBIST of adaptive filter unit 0 successful: no error in RAM

5.1.3 Write Register

SNAP

All Write Registers are Write Only Registers and cannot be read out.

CTRLTSMON[6:0] (Addr.: 2FH): Control of TS to be monitored, Reset value = 00H

MVAL | MCH[4] | MCH[3] | MCH[2] | MCH[1] | MCH[0] |

The bits CUFAIL, AFI3FAIL, AFI2FAIL, AFI1FAIL and AFI0FAIL are read only.

	SHOT	1414712	WOI I[I]		WOT 1[2]	W.O. II.	Wier i[o]
SNAPSHO	T '1':	this regist monitor re	er with MV egisters. Ar	r registers a AL set to '1 n interrupt is	'. The data s generated	remains st d as soon a	ored in the is the
	' 0 ':	when a ne Values of time the ti	ew request the monito meslot MC	alid. STATU is started bor registers a H[4:0] is deated only on	by access to are continu etected) if N	o MVAL. lously upda //VAL = '1'.	ated (each
		available i	in the moni	tor register	s.		
MVAL		register. S	Stops upda	condition for ting of value	es if SNAP	SHOT = '0'	
		•		•		defined by	/ MCH[4:0].
MCH[4:0]	se	lects the tin	neslot (cha	nnel) to be	monitored		

If MVAL = '1' the Monitor Read Registers are filled with the values of timeslot MCH[4:0] as soon as this timeslot is processed. The availibility of the monitored values in the Monitor Read Registers is indicated by setting the bit IRREQ.TSM and STATUS.TSM.

WP[7:0] (Addr.: 01H) Write Protection, Reset Value 'protected'= NOT 95H

WP[7]	WP[6]	WP[5]	WP[4]	WP[3]	WP[2]	WP[1]	WP[0]

WP[7:0]

Write access to the write protected configuration registers is released by writing the value 95H to this register. The write protection is activated by writing any other value.

IRMASK[6:0] (Addr.: 07H) Interrupt Mask, Reset Value = 7FH

-	WDOG	SYNCI	CA	TT	TE	UCC	TSM	
	MASK	MASK	MASK	MASK	MASK	MASK	MASK	

If an interrupt source is masked the information is shown in the STATUS register but not in the IRREQ register. Masking and unmasking does not affect the interrupt source. A new interrupt will be generated after masking and unmasking, if interrupt source is active (as indicated in STATUS register).

WDOGMASK '1': Watchdog condition does not cause an interrupt

'0': normal operation

SYNCIMASK '1': Incorrect SYNCI pulse does not cause an interrupt

'0': normal operation

CAMASK '1': coefficient available is ignored

'0': normal operation

TTMASK '1': test termination is ignored

'0': normal operation

TEMASK '1': timer expired is ignored

'0': normal operation

UCCMASK '1': UCC interrupt is ignored

'0': normal operation

TSMMASK '1': timeslot monitor values available is ignored

'0': normal operation

WDG1[7:0] (Addr.: 02H) Watchdog 1

WDG1[7]	WDG1[6]	WDG1[5]	WDG1[4]	WDG1[3]	WDG1[2]	WDG1[1]	WDG1[0]
---------	---------	---------	---------	---------	---------	---------	---------

WDG1[7:0] For watchdog test: Must bewritten with the defined value AAH as

the first of the three watchdog registers within 2 seconds

WDG2[7:0] (Addr.: 03H) Watchdog 2

WDG2[7] WDG2[6] WDG2[5] WDG2[4] WDG2[3] WDG2[2] WDG2[1] WDG2[0]

WDG2[7:0] For watchdog test: Must be written with the defined value 99H as

the second of the three watchdog registers within 2 seconds

WDG3[7:0] (Addr.: 04H) Watchdog 3

WDG3[7] WDG3[6] WDG3[5] WDG3[4] WDG3[3] WDG3[2] WDG3[1] WDG3[0]

WDG3[7:0] For watchdog test: Must be written with the defined value 1DH as

the last of the three watchdog registers within 2 seconds

PCMCTRL[3:0] (Addr.: 06H) **PCM** Bypass and loop **C**ontrol, write protected, Reset value = 00H

-	-	-	-	SR	RS	R	S
				LOOP	LOOP	BYPASS	BYPASS

SRLOOP '1': Enables the internal loop from SO signal to RI signal

'0': Normal operation

RSLOOP '1': Enables the internal loop from RO signal to SI signal

'0': Normal operation

RBYPASS '1': Bypasses the RI input directly to the RO output

'0': Normal operation

SBYPASS '1': Bypasses the SI input directly to the SO output

'0': Normal operation

Note: If SRLOOP='1' and RSLOOP='1' only RSLOOP becomes active.

CONFPCM[7:0] (Addr.: 30H): Global **Conf**iguration of **PCM** outputs, write protected, Reset value = 03H

NLP	NLP	SOATT	SOATT	ROATT	ROATT	DYN	INVERR
ITU	MOD	EN	MOD	EN	MOD	SUB	SIGN

NLPITU '1': NLP comfort noise according to ITU

'0': NLP comfort noise subjective

NLPMOD only if NLPITU = '1': '1':output signal is band limited noise

'0':output signal is zero, i.e. line is dead

SOATTEN '1': Attenuation of send path output enabled and controlled by echo

canceller en/disable

'0': Attenuation of send path output is disabled for all channels

SOATTMOD '1': Attenuation of send path output is 2.5 dB if enabled

'0': Attenuation of send path output is 6 dB if enabled

ROATTEN '1': Attenuation of receive path output enabled and controlled by

echo canceller en/disable

'0': Attenuation of receive path output is disabled for all channels

ROATTMOD '1': Attenuation of receive path output is 2.5 dB if enabled

'0': Attenuation of receive path output is 6 dB if enabled

'1': The subtractor dynamically attenuates the send output signal if **DYNSUB**

difference is derived from large signal levels

'0': The subtractor operates in linear mode

'1': Sign of error signal (Echo + Near end speech) is **INVERRSIGN**

inverted (normal operation)

'0': Sign of error signal (Echo + Near end speech) is not inverted (incorrect operation, for test only)

CONFLAW[3:0] (Addr.: 3FH): Global configuration of PCM encoding law, write protected, Reset value = 00H

-	-	-	-	CHIND	GCONV	GALAW	GALAW
					DISLAW	NE	FE

For explanation of A/µ-Law Conversion functions see also Figure 10.

CHIND

'1': Enables individual PCM encoding law settings for each channel by bits 7 to 5 of the individual control registers CHCTRL 0 to 31

'0': Enables global PCM encoding law configuration for all channels

by bits 2 to 0 of this register

GCONVDISLAW

Determines the valid PCM law if the PCM-Law conversion of an individual channel is disabled by any source (µP, UCC or serial control signal) if CHIND = '0'

'1': All PCM channels for which conversion is disabled are A-Law en/decoded*

'0': All PCM channels for which conversion is disabled are μ-Law en/decoded*

GALAWNE Allows global configuration of near end PCM-Law:

'1': A-Law PCM encoding at near end side (RO and SI)

if CHIND = '0' and CONVDIS = '0'

'0': μ-Law PCM encoding at near end side (RO and SI)

if CHIND = '0 and CONVDIS = '0'

GALAWFE Allows global configuration of far end PCM-Law:

'1': A-Law PCM encoding at far end side (RI and SO)

Data Sheet 87 Rev. 2, 2004-07-28

if CHIND = '0' and CONVDIS = '0'

'0': μ-Law PCM encoding at far end side (RI and SO) if CHIND = '0' and CONVDIS = '0'

*Note: In the case of no A-/ μ -Law conversion (same law at near and far end side) the PCM encoding law can temporarily be changed by any conversion disabling source (μ P, UCC FX-Bit or serial control signal) if GCONVDISLAW is different from GALAWNE/GALAWFE.

CHCTRL0-31[7:0] (Addr.: 40H-5FH): Individual channel control, write protected, Reset value = 00H

ICONV	IALAW	IALAW	CONV	FREEZE	NLPDIS	DIS	ENP
DISLAW	NE	FE	DIS			ABLE	CTRL

The upper three bits ICONVDISLAW, IALAWNE and IALAWFE are only enabled if CONFLAW.CHIND = '1'. For explanation of law conversion see also **Figure 10**.

ICONVDISLAW

Determines the valid PCM-law of the corresponding channel if the PCM-Law conversion for this channel is disabled (CONVDIS = '1') and channel individual settings are enabled

(Bit CONFLAW.CHIND = '1')

- '1': The corresponding PCM channel is A-Law en/decoded if conversion is disabled*
- '0': The corresponding PCM channel is μ-Law en/decoded if conversion is disabled*

IALAWNE

- '1': The corresponding PCM channel is A-Law PCM en/decoded at the near end side (RO and SI) if CONFLAW.CHIND = '1' and CONVDIS = '0'
- '0': The corresponding PCM channel is μ-Law PCM en/decoded at the near end side (RO and SI) if CONFLAW.CHIND = '1' and CONVDIS = '0'

IALAWFE

- '1': The corresponding PCM channel is A-Law PCM en/decoded at the far end side (RI and SO) if CONFLAW.CHIND = '1' and CONVDIS = '0'
- '0': The corresponding PCM channel is μ -Law PCM en/decoded at the far end side (RI and SO) if CONFLAW.CHIND = '1' and CONVDIS = '0'

CONVDIS

'1': Disables the PCM Law conversion (GALAWNE, GALAWFE, IALAWNE, IALAWFE) for the corresponding channel. The valid encoding Law for this channel is determined by the values of the Bits ICONVDISLAW of this register if channel individual settings are configured (CHIND = '1') or the settings of the global register CONFLAW.GCONVDISLAW, if global configuration is configured

(CHIND = '0').

'0': Possible PCM Law conversion is enabled if Bit ENPCTRL = '1', Law conversion on/off depends on other hardware sources (serial control signals, UCC) if ENPCTRL = '0'.

FREEZE

- '1': The H-register of the corresponding channel are frozen
- '0': The freezing of the H-Register for the corresponding channel depends on the internal control of the speech control unit only if ENPCTRL = '1', Freezing of H-Registers for the corresponding channel also depends on other hardware sources (serial control signals) if ENPCTRL = '0'.

NLPDIS

- '1': The NLP of the corresponding channel is bypassed
- '0': The bypass of the NLP for the corresponding channel depends on the internal control of the speech control unit only if ENPCTRL = '1', The bypassing of the NLP for the corresponding channel also depends on other hardware sources (serial control signals) if ENPCTRL = '0'.

DISABLE

- '1': The entire echo canceling path (subtractor, NLP, attenuator in send and receive path) of the corresponding channel is bypassed and the H-Register and Speech Control Unit are reset.
- '0': The disabling (bypass) of the entire canceler for the corresponding channel depends on the internal control of the speech control unit only if ENPCTRL = '1', The disabling (bypass) of the entire canceler for the corresponding channel also depends on other hardware sources if ENPCTRL = '0'.

ENPCTRL

- '1': Only the settings of the bits CONVDIS, FREEZE, NLPDIS, DISABLE are valid for the corresponding channel. All other hardware control sources (serial control signals, UCC, TS16, IDLE detection) for the corresponding channel are disabled.
- '0': The settings of the bits CONVDIS, FREEZE, NLPDIS, DISABLE for the corresponding channel are 'ored' with other hardware control sources (serial control signals, UCC, TS16, IDLE detection).

*Note: In the case of no A-/ μ -Law conversion (same Law at near and far end side) the PCM encoding law can temporarily be changed by any conversion disabling source (μ P, UCC FX-Bit or serial control signal) if ICONVDISLAW is different from IALAWNE/IALAWFE

SCMASK[5:0] (Addr.: 6BH): **S**erial **C**ontrol Interface **Mask**, write protected, Reset value = 3FH

-	-	DIS	NLPDIS	FREEZE	CONV	ENCC	FLEX
		MASK	MASK	MASK	DIS	MASK	SCTR
					MASK		MASK

This register is for masking of external pins of the Serial Interface. The effect of this register depends also on the value of CHCTRL0..31.ENPCTRL.

DISMASK '1': serial control signal at pin DIS disabled

'0': serial control signal at pin DIS enabled

NLPDISMASK '1': serial control signal at pin NLPDIS disabled

'0': serial control signal at pin NLPDIS enabled

FREEZEMASK '1': serial control signal at pin FREEZE disabled

'0': serial control signal at pin FREEZE enabled

CONVDISMASK '1': serial control signal at pin CONVDIS disabled

'0': serial control signal at pin CONVDIS enabled

ENCCMASK '1': serial control signal at pin ENCC disabled

'0': serial control signal at pin ENCC enabled

FLEXSCTRMASK '1': serial control signal at pin FLEXSCTR disabled

'0': serial control signal at pin FLEXSCTR enabled

CONFFLEXSCTR[5:0] (Addr.: 6CH): **Conf**iguration of the **flex**ible **s**erial **c**on**tr**ol signal, write protected, Reset value = 00H

-	-	FS	FS	FS	FS	FS	FS
		BYPASS	NLPDIS	FREEZE	SCU	HRESET	CONV
					RESET		DIS

This register determines the function of pin FLEXSCTR if bit SCMASK.FLEXSCTRMASK = '0'

FSBYPASS '1': serial control signal at pin FLEXSCTR leads to bypassing of the

PCM signal of the entire cancelling path (canceller ,NLP,

attenuator and bypassing of the attenuator in the receive path)

'0': No bypass of the entire compensator by FLEXSCTR

FSNLPDIS '1': serial control signal at pin FLEXSCTR disables the NLP and

attenuator

'0': No disabling of the NLP and attenuator by FLEXSCTR

FSFREEZE '1': serial control signal at pin FLEXSCTR freezes the H-Register

'0': No freeze of the H-Register by FLEXSCTR

FSSCURESET '1': serial control signal at pin FLEXSCTR resets the attenuation

meters in the speech control unit

'0': No reset of the attenuation meters unit by FLEXSCTR

FSHRESET '1': serial control signal at pin FLEXSCTR resets the H-Register

'0': No reset of the H-Register by FLEXSCTR

FSCONVDIS '1': serial control signal at pin FLEXSCTR disables the PCM-Law

conversion (in receive and send path)

'0': No disable of the PCM-Law conversion by FLEXSCTR

CONFFLEXUCC[5:0] (Addr.: 6DH): **Conf**iguration of the **flex**ible **UCC** control bit (FX-Bit), write protected, Reset value = 00H

-	-	FU	FU	FU	FU	FU	FU
		BYPASS	NLPDIS	FREEZE	SCU	HRESET	CONV
					RESET		DIS

This register determines the function of the FX-Bit of the UCC signal. The FX bit is defined in register CONUCC.SELFX.

FUBYPASS '1': The FX-Bit leads to bypassing of the PCM signal of the entire

cancelling path (canceller, NLP, attenuator in receive and send

path)

'0': No bypass of the entire compensator by the FX-Bit

FUNLPDIS '1': THE FX-Bit disables the NLP and attenuator

'0': No disabling of the NLP and attenuator by the FX-Bit

FUFREEZE '1': THE FX-Bit freezes the H-Register

'0': No freeze of the H-Register by the FX-Bit

FUSCURESET '1': THE FX-Bit resets the attenuation meters in the speech

controling unit

'0': No reset of the attenuation meters by the FX-Bit

FUHRESET '1': THE FX-Bit resets the H-Register

'0': No reset of the H-Register by the FX-Bit

U. No reset of the H-riegister by the FX-bit

FUCONVDIS '1': THE FX-Bit disables the PCM-Law conversion (in receive and

send path)

'0': No disable of the PCM-Law conversion by the FX-Bit

Note: Clear channel (64 clear) control by the FX-Bit can be enabled by setting this register to "xx1xxxx1"

CONFFLEXMON[7:0] (Addr.: 6FH): **Conf**iguration of **Flex**ible **Mon**itor Signals, Reset value = FEH

| CONF |
|---------|---------|---------|---------|---------|---------|---------|---------|
| FLEX |
| MON1[3] | MON1[2] | MON1[1] | MON1[0] | MON2[3] | MON2[2] | MON2[1] | MON2[0] |

Data Sheet 91 Rev. 2, 2004-07-28

The bits CONFFLEXMON1[3:0] and CONFFLEXMON2[3:0] configure the serial control signals FLEXMON1 and FLEXMON2, respectively. CONFFLEXMON1[3:0] / CONFFLEXMON2[3:0]

Configuration of the flexible monitor output signal at pin FLEXMON1/FLEXMON2

"0000": Idle channel detected is monitored at pin FLEXMON1 / FLEXMON2

"0001": 2010 Hz speech protection: first level reached (bypass of entire canceller) is monitored at pin FLEXMON1 / FLEXMON2

"0010": 2010 Hz speech protection: second level reached (H-Register reset) is monitored at pin FLEXMON1

"0011": 2010 Hz (SS Nr.7) detected but without speech protection is monitored at pin FLEXMON1 / FLEXMON2

"0100": Convergence stability protection for non-speech signals active is monitored at pin FLEXMON1 / FLEXMON2

"0101": Fast convergence mode active is monitored at pin FLEXMON1 / FLEXMON2

"0110": Near end subscriber is louder than the far end subscriber (true double talk) is monitored at pin FLEXMON1 / FLEXMON2

"0111": Subtractor bypassed because ERL > value of BYPTHL[4:0] is monitored at pin FLEXMON1 / FLEXMON2

"1000": 2100 Hz with phase shift and speech protection detected is monitored at pin FLEXMON1 / FLEXMON2

"1001": 2100 Hz detected with speech protection is monitored at pin FLEXMON1 / FLEXMON2

"1010": 2100 Hz detected but without speech protection is monitored at pin FLEXMON1 / FLEXMON2

"1011": "No-voice" detected is monitored at pin FLEXMON1 / FLEXMON2

"1100": RITESTDATA in channel selected by register ATE
(2 MHz stream valid only in selected test channel
otherwise all zeros) is monitored at pin FLEXMON1 /
FLEXMON2

"1101": SITESTDATA in channel selected by register ATE
(2 MHz stream valid only in selected test channel
otherwise all zeros) is monitored at pin FLEXMON1 /
FLEXMON2

"1110": Far end speech exceeds level configured in CONFSCU3.MINLEV and background noise is monitored at pin FLEXMON1 /FLEXMON2

"1111": Near end speech exceeds level configured in CONFSCU3.MINLEV and background noise and estimated echo level is monitored at pin

FLEXMON1 /FLEXMON2

CONFIDLE[5:0] (Addr.: 32H): **Conf**iguration of **IDLE** Detection, write protected, Reset value = 1DH

-	-	ENIDLE	IDPT[2]	IDPT[1]	IDPT[0]	IDLE	SELSI
						MODE	IDLE

For idle detection the Receive In or Send In input pattern is compared either with itself or with a maskable configurable pattern of Register IDLEPATTERN. An idle channel can be indicated in MONSTAT2.MIDLE. An idle channel can also be displayed at pins FLEXMON1 or FLEXMON2.

ENIDLE '1': Enables IDLE Detection for disabling of channels

A channel that is detected to be idling will be disabled (H-Register

reset, bypass, Speech Control reset)

'0': Disables IDLE detection

IDPT[2:0] Determines the length of the IDLE detection/protection interval

"000": protection time = 64 ms
"001": protection time = 128 ms
"010": protection time = 512 ms
"011": protection time = 1 s
"100": protection time = 4.1 s

"100": protection time = 4.1 s "101": protection time = 8.2 s "110": protection time = 32.8s

"111": protection time = 65.5s (according ITU)

IDLEMODE '1': IDLE detection pattern comparison operates on the last received

pattern of the actual surveyed channel

'0': IDLE detection pattern comparison operates on the pattern in

register IDLEPATTERN

SELSIIDLE '1': Idle detection operates on send path input

'0': Idle detection operates on receive path input

IDLEMASK[7:0] (Addr.: 33H): **IDLE** detection bit compare **MASK**,write protected, Reset value = 00H

| IDLE |
|---------|---------|---------|---------|---------|---------|---------|---------|
| MASK[7] | MASK[6] | MASK[5] | MASK[4] | MASK[3] | MASK[2] | MASK[1] | MASK[0] |

IDLEMASK [7:0] '1': The corresponding bit is ignored for pattern comparison

'0': normal operation (bit comparison enabled)

IDLEPATTERN[7:0] (Addr.: 34H): **Idlepattern**, write protected, Reset value = 55H

IDLE								
PAT								
TERN[7]	TERN[6]	TERN[5]	TERN[4]	TERN[3]	TERN[2]	TERN[1]	TERN[0]	

The reset value corresponds to a level minus infinity for A-Law encoding IDLEPATTERN [7:0] IDLE Pattern for comparison with the receive values if CONFIDLE.IDLEMODE = '0'

CONFTS16[5:0] (Addr.: 31H) **Conf**iguration of **TS16** CAS Evaluation for E1 frames, write protected, Reset value = 12H

-		-	ENTS16	SELSI	FLINV	FL	FL	FL
				TS16		SEL[1]	SEL[0]	FREEZE
	•							
ENTS16		'1':	: TS16 CAS	S Evaluatio	n enabled			
		'0 ':	: TS16 CAS	S Evaluatio	n disabled			
SELSITS1	6	'1':	: TS16 CAS	S Evaluatio	n operates	on send pa	ath input	
		'0'	: TS16 CAS	S Evaluatio	n operates	on receive	path input	
FLINV		ln۱	version of s	elected flag	g bit, "Activ	e" means a	n enabled	time slot.
			change of t	•	•			
		'1':	: flag bit is	active '0'	J		J	O
			· flog bit io					

'0': flag bit is active '1'

FLSEL [1:0] Selection of flag bit (MSB of TS 16 is bit 7):

"00": En/Disable via D-Bit (bit 4 and bit 0 of TS 16 are evaluated)
"01": En/Disable via C-Bit (bit 5 and bit 1 of TS 16 are evaluated)
"10": En/Disable via B-Bit (bit 6 and bit 2 of TS 16 are evaluated)
"11": En/Disable via A-Bit (bit 7 and bit 3 of TS 16 are evaluated)

FLFREEZE '1': Freeze (no update) of flag bits

'0': normal operation

CONFUCC[6:0] (Addr.: 60H): **Conf**iguration of **UCC** Interface, write protected, Reset value = 00H

-	R	EN	EN	SEL	SEL	EN	RSW
	LISTEN	TUCCO	DISHW	FX[1]	FX[0]	SMLP	CTRL
						HW	

Data Sheet 94 Rev. 2, 2004-07-28

RLISTEN

This bit is only active in Reflect Mode which can be configured via bit CONFUCC.RSWCTRL or SMLP bit of UCC Interface.

- '1': UCCI input data will be transferred to IRAM and interrupt will be generated
- '0': Normal operation: No data is transferred to IRAM, no interrupts are generated except by SMLP bit in UCC special frame if unmasked.

ENTUCCO

- '1': Control signal for external tristate buffer TUCCO is enabled for processed channels only (all 32 channels in 64 ms mode or 16 channels in 128 ms mode if bit UCCFRS.128FRSEN is set to '1'). The mode depends on setting of Pins MODE1 and MODE0.
- '0': Tri-State-Buffer control signal TUCCO is disabled, i.e. = '1'

ENDISHW

- '1': The UCC DIS-Bit (Bit 4) of associated channel (see **Figure 11**) is used for disabling of the associated channel.
- '0': disable special handling of the DIS-Bit (Bit 4) for channel individual UCC frames by hardware

SELFX [1:0]

Selects the UCC bit for the flexible control bit (FX-Bit)

"11": UCC-Bit 2 is selected "10": UCC-Bit 1 is selected "01": UCC-Bit 0 is selected

ENSMLPHW

"00": No UCC-Bit is selected, i.e. UCC FX-Bit is disabled

Enables special handling of the SMLP bit in the special frame FRS by hardware if the special frame mode is enabled (Bit NOFRS = '0')

- '1': The reflection of UCCI to UCCO is activated by the hardware at the beginning of the next channel individual frame after the bit SMLP in FRS (UCC Special Frame) changes from '0' to '1'. The value of the current FRS is the last that is transferred to IRAM, all the following FRS's will no longer be transferred to the IRAM. Only a change of the SLMPbit in FRS is indicated by an interrupt if not maked by IMASKFRS[7]. Additionally the current status of the channel individual control bits DIS-Bit and FX-Bit is frozen. This reflection is deactivated with the beginning of the next channel individual frame after the FRS, in which the hardware detects a '1' to '0' change of the SMLP bit. The value of this FRS is transferred to the IRAM.
- '0': normal operation, reflection control by bit RSWCTRL

RSWCTRL

Only effective if ENSMLPHW = '0', Reflection control by software.

'1': The reflection of UCCI to UCCO is activated by the software, not by the hardware via SMLP bit evaluation. Only a change of the SLMP in FRS is indicated, and the current status of the channel individual control bits DIS-Bit and FX-Bit is frozen.

The timing for de/activation of the reflection depends solely on

Data Sheet 95 Rev. 2, 2004-07-28

the performance of the software and is unpredictable! '0': normal operation

Note: In 128 ms mode the DIS-Bit and the FX-Bit are only evaluated in the 16 processed channels.

UCCMFR[4:0] (Addr.: 61H): **UCC M**ulti**fr**ame Alignment, write protected, Reset value = 00H

-	-	-	UCC	UCC	UCC	UCC	UCC
			MFR[4]	MFR[3]	MFR[2]	MFR[1]	MFR[0]

UCCMFR[4:0]

Denotes the UCC frame number for the next complete UCC frame (beginning with bit 7, phase 0, channel 0) after the first detection of an active SYNCI impulse with the falling edge of SCLKI (UCC frame alignment is configured by register UCCALIGN). For explanation see also Figure 25 and Figure 26.

UCCFRS[6:0] (Addr.: 62H): Selection of the special **UCC** Frame **FRS**, write protected, Reset value = 00H

-	NOFRS	128FRS	UCC	UCC	UCC	UCC	UCC
		EN	FRS[4]	FRS[3]	FRS[2]	FRS[1]	FRS[0]

NOFRS

- '1': The UCC frame corresponding to the value in UCCFRS[4:0] is not handled as the special UCC frame containing global SIDEC information but as a frame that contains channel individual information (like the other UCC frames)
- '0': The UCC frame corresponding to the value in UCCFRS[4:0] is handled as the special UCC frame that contains global SIDEC related (not channel individual) information.

 Note: If this setting is configured, the PCM channel that corresponds to the value in UCCFRS[4:0] can not individually be controlled directly via UCC and is considered as a PCM channel

controlled directly via UCC and is considered as a PCM channel containing no payload data. The DIS-Bit and the FX-Bit are not evaluated for this channel and set inactive. It is the responsibility of the software to disable the Echo Canceller and Law conversion function via the channel individual control registers CHCTR* in order to enable the transparent (64-clear) mode for this channel.

128FRSEN

'1': enables the output of all frames at UCCO and the activation of TUCCO for all frames in 128 ms mode even if the number does not correspond to one of the 16 processed channels.*

'0': disables the output of all frames at UCCO and the activation of TUCCO for all frames in 128 ms mode if the number does not correspond to one of the 16 processed channels.*

UCCFRS[4:0]

Denotes the frame number of the special UCC frame FRS.

*Caution: The activation of the bit 128FRSEN is solely intended for a configuration where only one SIDEC in 128 ms mode is used for one PCM30 interface processing only 16 channels. If two SIDECs in 128 ms master and slave mode are used in parallel for one PCM interface the activation of this bit could result in severe damage of the external driver at the UCCO bus.

WRUCC[5:0] (Addr.: 63H): Write/Read UCCI, Reset value = 00H

		1	WRO RAM	ARAM[4]	ARAM[3]	ARAM[2]	ARAM[1]	ARAM[0]
_	•			•	•	•	•	

WRORAM

'1': Write access: the byte stored in register DORAM is written to the UCC output RAM (ORAM) at UCC frame number ARAM [4:0].

'0': read access: the byte stored in the UCC input RAM (IRAM) at UCC frame number ARAM [4:0] is copied to register DIRAM. Data can be read after 8 CLK32 cycles.

ARAM [4:0]

Value corresponds to the ORAM or IRAM address where data is

written to or read from

DORAM[7:0] (Addr.: 64H): Data Output RAM, Reset value = 00H

| DO |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RAM[7] | RAM[6] | RAM[5] | RAM[5] | RAM[3] | RAM[2] | RAM[1] | RAM[0] |

DORAM [7:0] Data to be written to the ORAM at address WRUCC. ARAM [4:0]

IMASKFRS[7:0] (Addr.: 65H): Interrupt **Mask** for the special UCC frame **FRS**, Reset value = 00H

| IMASK |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FRS[7] | FRS[6] | FRS[5] | FRS[4] | FRS[3] | FRS[2] | FRS[1] | FRS[0] |

IMASKFRS[7:0] Each activated (set to '1') mask bit prevents the generation of an UCC interrupt at a change of the corresponding bit in FRS.

Note: In 128 ms mode the change of an unmasked bit generates an interrupt condition only if the frame number of the special UCC frame corresponds to one of the 16 processed channels or bit UCCFRS.128FRSEN is set to '1'.

IMASKFRN[7:0] (Addr.: 66H): Interrupt **Mask** for channel individual UCC frames (**FRN**), Reset value = 00H

| IMASK |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FRN[7] | FRN[6] | FRN[5] | FRN[4] | FRN[3] | FRN[2] | FRN[1] | FRN[0] |

IMASKFRN[7:0]

Each activated (set to '1') mask bit prevents the generation of an UCC interrupt at a change of the corresponding bit in any channel individual UCC frame FRN.

Note: In 128 ms mode the change of an unmasked bit in one of the channel individual UCC frames generates an interrupt condition only if the frame number of the changed frame corresponds to one of the 16 processed channels or bit UCCFRS.128FRSEN is set to '1'.

TESTTIMER[1:0] (Addr.: 37H): μ P **Test** and **Timer**, write protected,

Reset value = 00H

	-	-	-	-	-	UPTEST	RUN
							TIMER

UPTEST enable for the self test:

'1': self test is executed in the test channel selected by ATE and values of register CTRLTEST are evaluated. This channel is bypassed according to Figure 10 with "BYPASS".

'0': self test disabled

RUNTIMER '1': start timer*

'0': disable/stop timer*

ATE[4:0] (Addr.: 35H): Address of Test-channel, write protected, Reset value = 00H

-	-	-	ATE[4]	ATE[3]	ATE[2]	ATE[1]	ATE[0]

ATE [4:0]

On the one hand this value corresponds to the channel for which the determination is made if it is en/disabled (result in bit TSEN in register SFATSES). On the other hand, the value corresponds to the channel in which the test is executed.

Note: A test can only be executed in a disabled channel. Therefore, it must be determined whether the channel is en/disabled. Once a test is started it can only be

^{*} Note: For using the timer in conjunction with the self-test, the timer should be started at the same time the test is activated.

terminated by the software by resetting the bit TESTTIMER.UPTEST. If the channel that is background tested by the software suddenly becomes enabled by external sources before the test is terminated an interrupt is generated that informs the software to abort the test immediately.

CTRLTEST[7:0] (Addr.: 38H): Control of test channel, Reset value = 00H

Т	Т	Т	Т	Т	Т	Т	Т
FREEZE	NLPDIS	ATTDIS	SINDIS	EN	ALAW	EDEL[1]	EDEL[0]

TFREEZE Freeze of speech control unit and H-Register in selected test

channel:

'1': speech control unit and H-Register are frozen

'0': normal operation

TNLPDIS NLP disable (bypass) in selected test channel:

'1': NLP disabled '0': normal operation

TATTDIS Disable of output attenuator in selected test channel:

'1': Attenuator disabled

'0': normal operation, according to setting of register CONFPCM

TSINDIS Disable of "no speech" detection in selected test channel:

'1': "no speech" detection disabled

'0': normal operation

TEN En/Disable of selected test channel:

'1': test channel enabled

'0': test channel disabled (H-Register and Attenuation meters reset)

TALAW PCM encoding Law selection of selected test channel:

'1': test channel A-Law encoded '0': test channel μ-Law encoded

TEDEL [1:0] end echo delay for test pattern:

"11": 7*125 μs "10": 6*125 μs "01": 5*125 μs "**00**": 4*125 μs

Note: For the internal functionality of the channel that is tested in the background all external control sources have no effect.

TSGSPP[7:0] (Addr.: 39H): Test signal generator for send path pattern,

Reset value = 55H

SG	SPTP[6]	SPTP[5]	SPTP[4]	SPTP[3]	SPTP[2]	SPTP[1]	SPTP[0]
MOD1							

Data Sheet 99 Rev. 2, 2004-07-28

SGMOD1 operation mode1 for signal generator (see **Table 36**) SPTP [6:0] Send path test pattern amplitude, log, A-/µ-Law encoded

TSGRPP[7:0] (Addr.: 3AH): **T**est **s**ignal **g**enerator for **r**eceive **p**ath **p**attern, Reset value = 55H

SG	RP						
MOD0	TP[6]	TP[5]	TP[4]	TP[3]	TP[2]	TP[1]	TP[0]

SGMOD0 operation mode 0 for signal generator (see **Table 36**)
RPTP[6:0] receive path test pattern amplitude, log, A-/µ-Law encoded

The sign of the test sequence is determined by the following table. The amplitude is given by TSGSPP[6:0] and TSGRPP[6;0]. Hence, rectified test signals are generated (see Figure 28).

Table 36 SGMOD1/0 Configuration

SGMOD1	SGMOD0	Test Signal Sign changes according to:
0	0	2105 Hz
0	1	2105 Hz inverted
1	0	2010 Hz
1	1	random sequence

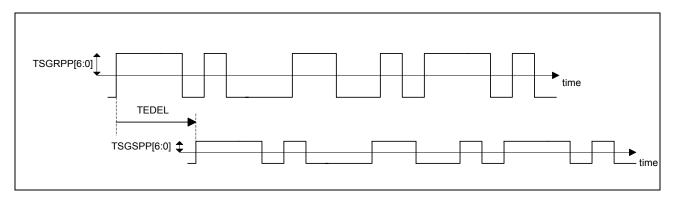


Figure 28 Explanation of Test Pattern Generation (random sign signal)

HTIM[7:0] (Addr.: 3BH): **High-Byte for Timer**, Reset value = 00H

TIM[15]	TIM[14]	TIM[13]	TIM[12]	TIM[11]	TIM[10]	TIM[9]	TIM[8]
---------	---------	---------	---------	---------	---------	--------	--------

The timer can be used by the processor, if the processor wants to do different operations inbetween. The timer is counting downward. The timing decrement is 1 ms. The accuracy of the timer is +0 ... 1 ms. The maximum value is 65535 ms.

TIM[15:8] load value for the Timer (high byte)

LTIM[7:0] (Addr. 3CH): **L**ow-Byte for **Tim**er, Reset value = 00H

TIM[7:0] load value for the Timer (low byte)

CONFSCU1[7:0] (Addr.: 12H): **Conf**iguration of **s**peech **c**ontrol **u**nit **1**, write protected, Reset value = 69H

BN	BN	BN	BN	ADAPT	ADAPT	ADAPT	ADAPT
ADD[3]	ADD[2]	ADD[1]	ADD[0]	FAST[1]	FAST[0]	SLOW[1]	SLOW[0]

BNADD [3:0] Safety distance for SO > background noise + BNADD comparison

"0000": +0 dB "0001": 1.5 dB "0010": 3 dB "0011": 4.5 dB "0100": 6 dB "0101": 7.5 dB "**0110**": 9 dB "0111": 10.5 dB "1000": 12 dB "1001": 13.5 dB "1010": 15 dB "1011": 16.5 dB "1100": 18 dB "1101": 21 dB "1110": 22.5 dB "1111": 24 dB

Attenuation Measurement

ADAPTFAST[1:0] Fast count period for attenuation meters for total echo attenuation and transhybrid loss

"00": 2 ms "01": 1 ms "**10**": 500 ມs "11": 250 ມs

ADAPTSLOW[1:0] Slow count period for attenuation meters for total echo attenuation and transhybrid loss

"00": 64 ms "**01**": 32 ms "10": 16 ms "11": 8 ms

CONFSCU2[7:0] (Addr.: 13H): **Conf**iguration of **s**peech **c**ontrol **u**nit **2**, write protected, Reset value = 97H

BYP	BYP	BYP	BYP	BYP	RE	RE	DHHLEC
THL[4]	THL[3]	THL[2]	THL[1]	THL[0]	ADD[1]	ADD[0]	

BYPTHL[4:0] Transhybrid loss as of which the canceling unit is bypassed

"00000": 0 dB "00001": 3 dB "00010": 6 dB "00011": 9 dB "00100": 12 dB

..

"**10010**": 54 dB

• • •

"11111": 93 dB (theoretical value only, attenuation will never be

reached)

READD[1:0] Safety distance for SO > residual echo + READD comparison

DHHLEC '1': Enables detection of a change in end echo path in the case of

high hybrid loss

'0': disabled

CONFSCU3[7:0] (Addr.: 14H): **Conf**iguration of **s**peech **c**ontrol **u**nit **3**, write protected, Reset value = A4H

MIN	MIN	MIN	MIN	MIN	DT	DT	ITUDT
LEV[4]	LEV[3]	LEV[2]	LEV[1]	LEV[0]	TIME[1]	TIME[0]	

H-Register Control:

MINLEV[4:0] Minimum level of SI and RI for controlling of the coefficients

(H-Register)

"00000": minus infinite, no residual echo limitation

"00001": -67.5 dBm0 "00010": -66.0 dBm0 "00011": -64.5 dBm0 "00100": -63 dBm0

• • • •

"**10100**": -39.0 dBm0

•••

"11111": -22.5 dBm0

Double Talk:

DTTIME[1:0] Double talk hangover time

"00": 32 ms "01": 64 ms "**10**": 128 ms "11": 256 ms

ITUDT '0': double talk detection operates up to 0 dB transhybrid loss

'1': double talk detection according ITU: transhybrid loss greater or

equal 6 dB

CONFSCU4[7:0] (Addr.: 15H): **Conf**iguration of **s**peech **c**ontrol **u**nit **4**, write protected, Reset value = A7H

OC	OC	OC	OC	SI	SI	OC	OC
INC[1]	INC[0]	DEC[1]	DEC[1]	ADD[1]	ADD[0]	AMRES	HRES

Overcompensation:

OCINC[1:0] Increment period for overcompensation evaluation

OCDEC[1:0] Decrement period for overcompensation evaluation

"00": 16 ms "01": 8 ms "**10**": 4 ms "11": 2 ms

SIADD[1:0] Safety distance for SO > SI + SIADD comparison

"00": +0 dB "**01**": +3 dB "10": +6 dB "11": +9 dB

OCAMRES '0': no reset of attenuation meters in case of overcompensation

'1': reset of attenuation meters only in case of overcompensation

OCHRES '0':no reset via overcompensation detection

'1': reset via overcompensation detection (H-Register reset only)

CONFSCU5[7:0] (Addr.: 16H): **Conf**iguration of **s**peech **c**ontrol **u**nit **5**, write protected, Reset value = 84H

NLP	NLP	NLP	NLP	NLP	SWMIN	SWMIN	SWMIN
RANGE	RANGE	RANGE	RANGE	RANGE	ATT[2]	ATT[1]	ATT[0]
[4]	[3]	[2]	[1]	[0]			

Non Linear Processor (NLP) activation

NLPRANGE[4:0] Operating range for the NLP

"00000": minus infinite: no residual echo limitation

"00001": -66 dBm0 "00010" -63 dBm0 "00011": -60 dBm0 "00100": -57 dBm0

• • •

"**10000**": -21 dBm0

...

"11000": +3 dBm0

SWMINATT[2:0] Minimum attenuation for switchover to final residual echo level

CONFSCU6[7:0] (Addr.: 17H): **Conf**iguration of **s**peech **c**ontrol **u**nit **6**, write protected, Reset value = 2AH

REL	REL	REL	RI	RI	RI	OF	OF
ADD[2]	ADD[1]	ADD[0]	MIN[2]	MIN[1]	MIN[0]	CNT[1]	CNT[0]

RELADD[2:0] Safety increment for the residual echo limiter threshold

"000": 0 dB "**001**": 3 dB "010": 6 dB "011": 9 dB "100": 12 dB "101": 15 dB "110": 18 dB "111": 21 dB

RIMIN[2:0] Reduction of receive path level for determination of the temporary

NLP threshold

Offset:

OFCNT[1:0] Count period for offset measurements

"00": disabled "01": 64 ms "**10**": 16 ms "11": 1 ms

CONFSCU7[7:0] (Addr.: 18H): **Conf**iguration of **s**peech **c**ontrol **u**nit **7**, write protected, Reset value = 8AH

NOISE	NOISE	NOISE	NOISE	BN	BN	BN	BN
INC[3]	INC[2]	INC[1]	INC[0]	INC[1]	INC[0]	DEC[1]	DEC[0]

NLP comfort noise:

NOISEINC[3:0] Increase of the noise level for maximum level evaluation

"0001": -4.5 dB "0000": -6 dB "0010": -3 dB "0011": -1.5 dB "0101": +1.5 dB "0100": +0 dB "0110": +3 dB "0111": +4.5 dB "**1000**": +6 dB "1001": +7.5 dB "1010": +9 dB "1011": +10.5 dB "1100": +12 dB "1101": +13.5 dB "1110": +15 dB "1111": +16.5 dB

BNINC[1:0] Incrementing period for background noise evaluation counter

"00": 64 ms "01": 32 ms "**10**": 16 ms "11": 8 ms

BNDEC[1:0] Decrementing period for background noise evaluation counter

"00": 16 ms "01": 8 ms "**10**": 4 ms "11": 2 ms

CONFSCU8[7:0] (Addr.: 19H), **Conf**iguration of **s**peech **c**ontrol **u**nit **8**, write protected, Reset value = EEH

| BNMAX |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SL[3] | SL[2] | SL[1] | SL[0] | RL[3] | RL[2] | RL[1] | RL[0] |

BNMAXSL[3:0] Maximum send path level for background noise measurement

> "0000": minus infinite "0001": -66 dBm0 "0010": -63 dBm0 "0011": -60 dBm0 "0100": -57 dBm0

"1110": -27 dBm0

-24 dBm0 (not possible) "1111":

BNMAXRL[3:0] Maximum receive path level for background noise measurement

> "0000": minus infinite "0001": -66 dBm0 "0010": -63 dBm0 "0011": -60 dBm0 "0100": -57 dBm0

"1110": -27 dBm0

"1111": -24 dBm0 (not possible)

CONFSCU9[7:0] (Addr.: 1AH), **Conf**iguration of **s**peech **c**ontrol **u**nit **9**, write protected, Reset value = 44H

DISBY	PSBY	DISNLP	PSNLP	DIS	PS	PSLM	DIS
		DIS	DIS	HRES	HRES	RES	RES

Bypass of Non Linear Processor (NLP), Subtractor and Attenuator (Receive and Send path):

DISBY '0': no bypass via 2100 Hz Disabler without phase shift

> '1': bypass via 2100 Hz Disabler even without phase shift '0': no bypass via 2100 Hz Disabler even with phase shift

PSBY

'1': bypass via 2100 Hz Disabler with phase shift

Disable/Bypass of NLP:

DISNLPDIS '0': no disable via 2100 Hz Disabler without phase shift

'1': disable via 2100 Hz Disabler even without phase shift

'0': no disable via 2100 Hz Disabler even with phase shift **PSNLPDIS**

'1': disable via 2100 Hz Disabler with phase shift

Coefficient (H-Register) reset:

DISHRES '0': no reset via 2100 Hz Disabler without phase shift

'1': reset via 2100 Hz Disabler even without phase shift

PSHRES '0': no reset via 2100 Hz Disabler even with phase shift

'1': reset via 2100 Hz Disabler with phase shift

Reset of attenuation meters in SCU:

PSLMRES '0': no reset of via 2100 Hz Disabler even with phase shift

'1': reset via 2100 Hz Disabler with phase shift

DISRES '0': no reset via 2100 Hz disable tone without phase shift

'1': reset via 2100 Hz disable tone even without phase shift

CONFSCU10[7:0] (Addr.: 1BH): **Conf**iguration of **s**peech **c**ontrol **u**nit **10**, write protected, Reset value = C0H

DIS	DIS	DIS	DIS	DIS	DIS	ITU	SP
LOCK[4]	LOCK[3]	LOCK[2]	LOCK[1]	LOCK[0]	56EN	DIS	PROT

Additional Controls:

DISLOCK[4:0] Self-locking level after response of the 2100 Hz tone disabler.

The tone disabler is inactive if the level is below the following value.

 "00000":
 minus infinite

 "00001":
 -67.5dBm0

 "00010":
 -66.0dBm0

 "00011":
 -64.5dBm0

 "00100":
 -63 dBm0

. .

"**11000**": -33.0 dBm0

- - -

"11111": -22.5 dBm0

DIS56EN '0': no special evaluation of bit 8 (LSB) in T1 frames for modem calls

'1': special evaluation of bit 8 (LSB) in T1 frames for modem calls: If all bit 8 (LSB) are '1' the first seven bit will bypass the echo

canceller.

ITUDIS '0': drop out time for tone disabler up to > 400 ms (necessary for

some modems). Interruption up to 400 ms of modem tone does

not cause enabling of canceller.

'1': drop out time for tone disabler < 400 ms according ITU

SPPROT Speech protection for 2100 Hz tone detection:

'**0**': normal speech protection '1': Increased Speech protection

Data Sheet 106 Rev. 2, 2004-07-28

VDFCTRL[7:0] (Addr.: 76H): Voice Detection Freeze Control,

write protected, Reset value = B4H

VDF	VDF	VDF	VDF	VD	VD	VD	VD
RELEN	REL[2]	REL[1]	REL[0]	FSOL[3]	FSOL[2]	FSOL[1]	FSOL[0]

VDFRELEN '0': No freeze of H-Register on no voice detection when

combined loss (ERL+ERLE) > VDFREL

'1':Freeze of H-Register on no voice detection when

combined loss (ERL+ERLE) > VDFREL

VDFREL[2:0]: Threshold for total echo loss (ERL+ERLE) at which H-Register are

frozen on a no voice signal detection if VDFRELEN = '1'

VDFSOL[3:0] Threshold for residual echo level at Send Out below

which the H-Register are frozen on a 'no voice' signal. "0000":minus infinite: no freezing for periodic signals

"0001":-66 dBm0 "0010":-63 dBm0 "0011":-60 dBm0 "**0100**":-57 dBm0

•••

"1101":-30 dBm0 "1110":-27 dBm0 "1111":-24 dBm0

CONFPSD[7:0] (Addr.: 1CH): **Conf**iguration of 2100 Hz tone **p**hase **s**hift **d**etector, write protected, Reset value = 43H

DT30DIS	DEP[1]	DEP[0]	DBP	DBP	DBP	DBP	DBP
			MIN[1]	MIN[0]	MAX[2]	MAX[1]	MAX[0]

DT30DIS '0': disable evaluation if phase shift detection of >30 ms is identified

'1': enable phase shift detection >30 ms

DEP[1:0] Evaluation time:

If no phase shift is detected in the time interval below the evaluation

is terminated.

DBPMIN[1:0] Minimum interruption time that results in response:

"**00**": 1.125 ms "01": 2.250 ms "10": 3.375 ms "11": 4.500 ms

DBPMAX[2:0] Maximum interruption time that results in response:

DBPMIN[1:0] and DBPMAX[2:0] determine the evaluation window.

CONFSS7[7:0] (Addr.: 1DH): **Conf**iguration of **SS7** continuity check tone detection, write protected, Reset value = 00H

DIS	DIS	DIS	DIS	BY	BY	BY	BY
NR7[3]	NR7[2]	NR7[1]	NR7[0]	NR7[3]	NR7[2]	NR7[1]	NR7[0]

If CONFSS7[7:0] = 00H the 2010 Hz tone detection is disabled.

DISNR7[3:0]

protection time for reset of H-register after SS7 continuity check tone detection. For this time the 2010 Hz signal must be applied to the SIDEC to reset the H-Register.

"0000": no reset "0001": 8ms "0011": 24ms "0010": 16ms "0100": 32ms "0101": 40ms "0110": 48ms "0111": 56ms "1000": 64ms "1001": 72ms "1010": 80ms "1011": 88ms "1100": 96ms "1101": 104ms "1110": 112ms "1111": 120ms

BYNR7[3:0]

protection for bypass of the canceller after SS7 continuity check tone detection. For this time the 2010 Hz signal must be applied to the SIDEC to bypass the Echo Canceller.

" 0000 ": no bypass	"0001": 8ms
"0010": 16ms	"0011": 24ms
"0100": 32ms	"0101": 40ms
"0110": 48ms	"0111": 56ms
"1000": 64ms	"1001": 72ms
"1010": 80ms	"1011": 88ms
"1100": 96ms	"1101": 104ms
"1110": 112ms	"1111": 120ms

Data Sheet 108 Rev. 2, 2004-07-28

CONFCC[6:0] (Addr.: 0BH) **Conf**iguration of **C**lock **C**ontrol unit, write protected, Reset value = 00H

-	INV	SYNC	SYNCO	SSCLK	DIS	DIS	DIS
	CTRL32	ACT	DUR	EDGE	CTRL32	SCLKO	CLK4O
	l			l	l		
INVCTRL3	2 '1':	Inverts the	e control vo	oltage signa	al for the 32	MHz VCO	at pin
		CTRL32 (see Figure	23)			•
	'0 ':	no inversi	on of the c	ontrol volta	ge signal fo	or the 32MH	Iz VCO at
		•	32 (see <mark>Fig</mark>	•			
SYNCACT					active edge		
				•	ctive edge i	s the falling	g edge)
SYNCODU				SCLK per			
				SCLK per			
SSCLKED	GE '1':		•		g edge of S	•	
		-		•	CLKI (see		
	'0':		•		ng edge of	·	
DICOTOLO		<u>-</u>	_	_	CLKI (see		
DISCTRL3	32 '1':	,	•	set to '1') tr : VCO at pi	ne output of n CTRL32	the contro	i voltage
	'0 ':	•		•	ol voltage si	gnal for the	32MHz
		VCO at pi	n CTRL32		J		
DISSCLKC) '1':	disables (constantly	set to '1') th	ne output of	f the systen	n clock at
		pin SCLK	0				
			•	•	m clock at p		
DISCLK4C) '1':	disables (CLK4O	constantly	set to '1') th	ne output of	f the clock a	at pin
	'0 ':	enables th	ne output of	f the clock a	at pin CLK4	łO	

FSLIPIV[6:0] (Addr.: 0CH) Frame **slip** safety **i**nter**v**al, write protected, Reset value = 28H

-	RF	RFN	FSLIP	FSLIP	FSLIP	FSLIP	FSLIP
	CLKEX		IV[4]	IV[3]	IV[2]	IV[1]	IV[0]

'1': Selects RFCLKEX as reference clock for the 16MHz PLL
 '0': Selects RFCLKN or RFCLKF (depending on bit RFN)as reference clock for the 16MHz PLL
 '1': Selects RFCLKN as reference clock for the 16MHz PLL if bit RFCLKEX = '0', and RFSPN as external data buffer sync pulse
 '0': Selects RFLCKF as reference clock for the 16MHz PLL if bit RFCLKEX = '0', and RFSPF as external data buffer sync pulse

FSLIPIV[4:0]

Determines the safety interval around the SYNCO pulse, which represents the minimum allowed distance between SYNCO and RFSPN or RFSPF in 2 µs steps. If the distance between RFSPN/F and SYNCO becomes smaller than FSLIPIV[4:0] * 2 µs, SYNCO will jump to the optimal distance of 62.5 µs with respect to RFSPN/F (frame slip). The default value is "01000".

RIALIGN[7:0] (Addr.: 0DH): **Receive input frame alignment**, write protected, Reset value = 00H.

| RI |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ALIGN[7] | ALIGN[6] | ALIGN[5] | ALIGN[4] | ALIGN[3] | ALIGN[2] | ALIGN[1] | ALIGN[0] |

RIALIGN[7:0]

Determines the valid frame bit of the receive input PCM frame (starting with bit 7 channel 0) at the first falling SCLKI edge, with which an active SYNCI impulse is detected. (00H = bit 7, channel 0; FFH = bit 0, channel 31). For explanation see Figure 19.

SIALIGN[7:0] (Addr.: 0EH): **S**end **i**nput frame **alig**nment, write protected, Reset value = 00H.

| SI |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ALIGN[7] | ALIGN[6] | ALIGN[5] | ALIGN[4] | ALIGN[3] | ALIGN[2] | ALIGN[1] | ALIGN[0] |

SIALIGN[7:0]

Determines the valid frame bit of the send input PCM frame (starting with bit 7 channel 0) at the first falling SCLKI edge, with which an active SYNCI impulse is detected. (00H = bit 7, channel 0; FFH = bit 0, channel 31). For explanation see **Figure 19**.

SOALIGN[7:0] (Addr.: 0FH): **S**end **o**utput frame **align**ment, write protected, Reset value = 00H.

| SO |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ALIGN[7] | ALIGN[6] | ALIGN[5] | ALIGN[4] | ALIGN[3] | ALIGN[2] | ALIGN[1] | ALIGN[0] |

SOALIGN[7:0]

Determines the valid frame bit of the send output PCM frame (starting with bit 7 channel 0) at the first falling SCLKI edge, with which an active SYNCI impulse is detected. (00H = bit 7, channel 0; FFH = bit 0, channel 31). For explanation see **Figure 19**.

UCCALIGN[7:0] (Addr.: 10H): UCC frame alignment, write protected, Reset value = 00H

| UCC |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ALIGN[7] | ALIGN[6] | ALIGN[5] | ALIGN[4] | ALIGN[3] | ALIGN[2] | ALIGN[1] | ALIGN[0] |

UCCALIGN[7:0]

Determines the valid frame bit of the UCC frame (starting with bit 7 channel 0) at the first falling SCLKI edge, with which an active SYNCI impulse is detected. (00H = bit 7, channel 0; FFH = bit 0, channel 31). For explanation see **Figure 25**.

PHALIGN[7:0] (Addr. 11H): Bit **Ph**ase **align**ment for RI, SI, SO and UCC, write protected, Reset value = 00H,

UCCPH	UCCPH	SOPH	SOPH	SIPH	SIPH	RIPH	RIPH
ALIGN[1]	ALIGN[0]	ALIGN[1]	ALIGN[0]	ALIGN[1]	ALIGN[0]	ALIGN[1]	ALIGN[0]

UCCPHALIGN[1:0]Determines the valid bit phase of the UCC frame bit (starting with phase 0) at the first falling SCLKI edge, with which an active SYNCI impulse is detected. ("00" = bit phase 0, "11" = bit phase 3)

For explanation see Figure 25.

SOPHALIGN[1:0] Determines the valid bit phase of the send output frame bit (starting with phase 0) at the first falling SCLKI edge, with which an active SYNCI impulse is detected. ("00" = bit phase 0, "11" = bit phase 3) For explanation see Figure 19.

SIPHALIGN[1:0] Determines the valid bit phase of the send input frame bit (starting with phase 0) at the first falling SCLKI edge, with which an active SYNCI impulse is detected. ("00" = bit phase 0, "11" = bit phase 3) For explanation see Figure 19.

RIPHALIGN[1:0] Determines the valid bit phase of the receive input frame bit (starting with phase 0) at the first falling SCLKI edge, with which an active SYNCI impulse is detected. ("00" = bit phase 0, "11" = bit phase 3) For explanation see Figure 19.

ASTOC[7:0] (Addr.:70H): **AFI Saw-Tooth and Offset Characteristic**, write protected, Reset value = 00H

ST	ST	ST	ST	ST	ST	AMPL[1]	AMPL[0]
RISE[2]	RISE[1]	RISE[0]	FALL[2]	FALL[1]	FALL[0]		

Low frequency components are superimposed to the Receive In AFI input signal to increase stability. Under normalconditions this superimposition is not necessary. STRISE[2:0] Saw-tooth rising clock frequency

Data Sheet 111 Rev. 2, 2004-07-28

STFALL[2:0] Saw-tooth falling clock frequency

The clock for the increasing a decreasing saw tooth offset voltage

is:

If STRISE[2:0] and STFALL[2:0] are set to "000", the clock will be

switched off.

AMPL[1:0] Saw-tooth and offset amplitude:

The maximum values of the saw tooth characteristic or offset (clock

is switched off) are:

These values will be added to the linearized receive path signals.

The max. linearized value in A/µLaw Code is 8064/8031

AFSTC[6:4,2:0] (Addr.:71H): **AFI Filter Spring Timer Configuration**, write protected, Reset value = 44H,

-	AC	AC	AC	-	С	С	С
	SPT[2]	SPT[1]	SPT[0]		SPT[2]	SPT[1]	SPT[0]

Additional damping of the Coefficients. This feature is disabled as soon as the coefficients are frozen.

ACSPT[2:0] Aux. coefficients spring timer CSPT[2:0] Coefficients spring timer

The period for ACSPT[2:0] and CSPT[2:0] is:

"000": 250 μs "001": 500 μs "010": 1 ms "011": 2 ms "100": 4ms "101": 8 ms "110": 16 ms "111": 32 ms

AEEPD[3:0] (Addr.: 72H): **AFI End Echo Path Delay**, write protected, Reset value = 0FH

-	-	-	-	DELAY	DELAY	DELAY	DELAY
				[3]	[2]	[1]	[0]

DELAY[3:0] End echo path delay:

Depending on the presumed delay in the end echo path, this register is set to DELAY := <echo_delay> / 8 ms -1. Thus, the AFI handles end echo path delays in the range 8 ms to 128 ms. For end echo

delays > 128 ms, a tandem configuration of two SIDEC ASICs has to be used in which a single SIDEC chip processes only every other four channels:

Master: 0,1,2,3, 8,9,10,11, 16,17,18,19, 24,25,26,27 Slave: 4,5,6,7, 12,13,14,15, 20,21,22,23, 28,29,30,31 If the 128 ms mode is not selected (pins MODE0 and MODE1), any DELAYs > 64 ms in register AEEPD are interpreted as 64 ms.

"0001": 16 ms "0000": 8 ms "0010": 24 ms "0011": 32 ms "0100": 40 ms "0101": 48 ms "0110": 56 ms "0111": 64 ms "1000": 72 ms "1001": 80 ms "1010": 88 ms "1011": 96 ms "1100": 104 ms "1101": 112 ms "1110": 120 ms "1111": 128 ms

AVDDI[7:0] (Addr.: 73H): **A**FI **V**oice **D**etection, **D**etection **I**ntervals, write protected, Reset value = 77H

VDMAX	VDMAX	VDMAX	VDMAX	VD	VD	VD	VD	
INTER								
VAL[3]	VAL[2]	VAL[1]	VAL[0]	VAL[3]	VAL[2]	VAL[1]	VAL[0]	

VDMAXINTERVAL[3:0]

Time interval for detecting maximum value for "no-voice" detection: VDMAXINTERVAL defines the time range over which the maximum of the received values for "no-voice"-detection is determined.

"0000": 8 ms	"0001": 16 ms
"0010": 24 ms	"0011": 32 ms
"0100": 40 ms	"0101": 48 ms
"0110": 56 ms	" 0111 ": 64 ms
"1000": 72 ms	"1001": 80 ms
"1010": 88 ms	"1011": 96 ms
"1100": 104 ms	"1101": 112 ms
"1110": 120 ms	"1111": 128 ms

VDINTERVAL[3:0]

Time interval for voice detection:

VDINTERVAL defines the time range over which received values are checked for "no-voice"-detection. The coding is the same as for AEEPD.DELAY.

"0100": 40 ms	"0101": 48 ms
"0110": 56 ms	" 0111 ": 64 ms
"1000": 72 ms	"1001": 80 ms
"1010": 88 ms	"1011": 96 ms
"1100": 104 ms	"1101": 112 ms
"1110": 120 ms	"1111": 128 ms

AVDHG[7:0] (Addr.: 74H): **A**FI **V**oice **D**etection, **H**ysteresis and **G**ap, write protected, Reset value = 74H

VDSO	VDSO	VDSO	VDSO	VD	VD	VD	VD	J
DELAY	DELAY	DELAY	DELAY	DIFF[3]	DIFF[2]	DIFF[1]	DIFF[0]	
[3]	[2]	[1]	[0]					

VDSODELAY[3:0] Delay for switching off "no-voice" after last detection

"0000": 8 ms	"0001": 16 ms
"0010": 24 ms	"0011": 32 ms
"0100": 40 ms	"0101": 48 ms
"0110": 56 ms	" 0111 ": 64 ms
"1000": 72 ms	"1001": 80 ms
"1010": 88 ms	"1011": 96 ms
"1100": 104 ms	"1101": 112 ms
"1110": 120 ms	"1111": 128 ms

VDDIFF[3:0]

VDDIFF defines the criterion for deciding whether a received value contributes to the "no-voice"-counting or not. A value does contribute if its amplitude differs by less than VDDIFF from the maximum in the interval AVDDI.VDMAXINTERVAL.

VDSODELAY defines the "hang-over" time of "no-voice" after it has been detected for the last time. This delay time is only evaluated if hysteresis is enabled for "no-voice" detection in ACONF.VDHYST. Difference between max. and current value for voice detection:

"0000": 0 dB	"0001": 3 dB
"0010": 6 dB	"0011": 9 dB
" 0100 ": 12 dB	"0101": 15 dB
"0110": 18 dB	"0111": 21 dB
"1000": 24 dB	"1001": 27 dB
"1010": 30 dB	"1011": 33 dB
"1100": 36 dB	"1101": 39 dB
"1110": 42 dB	"1111": 45 dB

Data Sheet 114 Rev. 2, 2004-07-28

AVDCI[7:0] (Addr.: 75H): AFI Voice Detection Count Init, write protected,

Reset value = 85H

| VDCI |
|------|------|------|------|------|------|------|------|
| [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |

VDCI[7:0]

Voice Detection Counter Init value:

A counter is used to count the number of values within the VDINTERVAL which fulfill the "no-voice"-criterion. "no-voice" is detected, if the counter ends up with a value that is greater or equal to 512 (64 ms mode) or 1024 (128 ms mode), respectively. The init -value for this counter is determined by VDCI in the following way:

64 ms Mode: <init-value> = VDCI[7..0] * 2 128 ms Mode: <init-value> = VDCI[7..0] * 4 The reset value of 85H requires that 48% of the values

must fulfill the "no-voice" criterion in case the default VDINTERVAL

(64 ms) is set)

ATMAT[3:0] (Addr.: 77H): **AFI T**urbo **M**ode **A**ctivation **T**hreshold, write protected, Reset value = 08H

-	-	-	-	TURBO	TURBO	TURBO	TURBO
				TH[3]	TH[2]	TH[1]	TH[0]

TURBOTH[3:0] Turbo Threshold:

This register specifies the threshold for activating the AFI turbo mode (turbo-on indicates that the AFI is adapting to a new end echo path). Turbo mode is activated if the absolute value of one or more auxiliary coefficients is greater than 351 + 4 * TURBOTH.

The default threshold is 383.

AACSC[7:0] (Addr.: 78H): **AFI A**uxiliary **C**oefficient **S**upervision **C**onfiguration, write protected, Reset value = 00H,

ACS	ACSC	ACSC	ACSC	ACSC	ACSC	ACS	ACS
EFFECT	TH[4]	TH[3]	TH[2]	TH[1]	TH[0]	TH[1]	TH[0]

To improve handling of periodic signals, two thresholds are used to determine when - probably due to a periodic signal - most of the auxiliary coefficients are becoming quite large. In that case, coefficient update should be slowed down. The slow down mode condition is described by ACSCTH[4:0] and ACSTH[1:0]. The effect of the slow down mode can be configured via the bit ACSEFFECT.

ACSEFFECT ACSEFFECT specifies the effect of slow-down mode. If set to '1',

coefficient update is limited to increasing/decreasing by at most 1. If set to '0', coefficient increment/decrement takes place in the normal way of operation, but turbo mode is disabled. Per default (after reset)

it is not active.

'0': normal operation

'1': Disable turbo mode, Coeff. update limited to +/- 1

ACSCTH[4:0] Aux. Coeff. Supervision Count Threshold:

ACSCTH specifies the threshold for activating the slow-down mode

of operation. Slow-down mode is active if at least 8 * ACSCTH

auxiliary coefficients are "large". The default value ACSCTH[4:0]="00000" switches off supervision.

ACSTH[1:0] Aux. Coeff. Supervision Threshold:

ACSTH specifies the threshold above which the absolute value of an auxiliary coefficient is considered "large". It refers to TURBOTH

in register ATMAT:

"**00**": ATMAT.TURBOTH - 32 "01": ATMAT.TURBOTH - 16 "10": ATMAT.TURBOTH - 8 "11": ATMAT.TURBOTH

ACONF[6:0] (Addr.: 79H): **AFI Conf**iguration, write protected, Reset value = 10H

-	EMAF	VD	VD	VD	VD	VD	VD
		HYST	IHA	AT[3]	AT[2]	AT[1]	AT[0]

EMAF Echo, Minimum Attenuation Factor for end echo path

'0': Attenuation 0 dB (no attenuation)

'1': Attenuation 6 dB

VDHYST Voice Detection, Hysteresis On/Off:

VDHYST selects whether a hysteresis is used for switching off

"no-voice".

'0': means that "no-voice" is active only if the

set of received values currently in the detection set (AVDDI.VDINTERVAL) fulfill the "no-voice" criterion.

'1': means that "no-voice" - once activated - remains active for the time specified in AVDHG.VDSODELAY.

VDIHA Voice Detection, Ignore High Amplitude:

'1': received values with an amplitude above 126 (logarithmic) are ignored for "no-voice" detection.

'0': all values are taken into account, no values are ignored

VDAT[3:0] Specifies a lower limit on the amplitude of received

Data Sheet 116 Rev. 2, 2004-07-28

values that are considered for "no-voice"-detection. It is configured in the range from -42 dBm0 (VDAT[3:0] = "0001") to 0 dBm0 (VDAT[3:0] = "1111") in steps of 3 dBm0. With VDAT set to the default value "0000", no lower limit on the amplitude is in effect for "no-voice"-detection.

"0000": - infinity	"0001": -42 dBm
"0010": -39 dBm	"0011": -36 dBm
"0100": -33 dBm	"0101": -30 dBm
"0110": -27 dBm	"0111": -24 dBm
"1000": -21 dBm	"1001": -18 dBm
"1010": -15 dBm	"1011": -12 dBm
"1100": -9 dBm	"1101": -6 dBm
"1110": -3 dBm	"1111": 0 dBm

AFCMC[7,4:0] (Addr.: 7AH): AFI Filter Coefficients Monitoring Control,

Reset value = 00H

MON	-	-	CH	CH	CH	CH	CH	
ON			SEL[4]	SEL[3]	SEL[2]	SEL[1]	SEL[0]	

To successively read out all coefficients of a channel's filter, the processor writes the channel number and a set MONON bit to this register. The coefficients and aux. coefficients of the channel are delivered in ascending order via the registers AFCD1 thru AFCD3. The SIDEC interrupt request "Monitored coefficient available" indicates availability of the next coefficient. A running readout procedure stops immediately if the processor writes the AFCMC register again.

MONON Monitoring on/off:

If MON_ON is cleared, coefficient readout is completely reset immediately. If '1' is written to an already set MONON bit,

MONON is first cleared to reset the readout procedure and then set to start readout for the new channel. If coefficient readout is not stopped explicitly by the processor, readout ends after delivery of

the channel's last coefficient which resets the MONON bit.

CHSEL[4:0] Channel selection:

In 128 ms mode the ASIC does not respond to requests for data channels it does not process (e.g. in master mode the chip responds only to requests for channels 0 to 3, 8 to 11, 16 to 19 and 24 to 27.

Data Sheet 117 Rev. 2, 2004-07-28

5.1.4 Read Register

CLKSTAT[5:0] (Addr.: 09H): Clock-Status

-	-	RF	RF	RF	SCLKI	CLK16	CLK32
		CLKEX	CLKN	CLKF			

RFCLKEX
RFCLKN
'1': no valid 2 MHz clock available at pin RFCLKEX
'1': no valid 2 MHz clock available at pin RFCLKN
RFCLKF
'1': no valid 2 MHz clock available at pin RFCLKF
SCLKI
'1': no valid 8 MHz clock available at pin SCLKI
CLK16
'1': no valid 16MHz clock available at pin CLK16
CLK32
'1': no valid 32 MHz clock available at pin CLK32

IRREQ[6:0] (Addr.: 08H): Interrupt-Request

-	WDOG	SYNCI	CA	TT	TE	UCC	TSM
---	------	-------	----	----	----	-----	-----

WDOG '1': Watchdog interrupt

SYNCI '1': SYNCI interrupt (no valid SYNCI detected)

CA '1': H-register coefficient available for readout interrupt

TT '1': Test termination because of enabled test timeslot interrupt

TE '1': Timer expired interrupt

UCC '1': UCC interrupt

TSM '1': Timeslot monitor interrupt, reset when accessing

CTRLTSMON.MVAL

Note: Each bit of this register will generate an interrupt at pin INT if activated (internally set to '1'). The bits and the pin $\overline{\text{INT}}$ are cleared after read. Setting of these bits by activated source can be inhibited by masking in register IRMASK.

STATUS[6:0] (Addr.: 6EH): Status

-	WDOG	SYNCI	CA	TT	TE	UCC	TSM
	POLL	POLL	POLL	POLL	POLL	POLL	POLL

Bits are reset when the interrupt source is no longer valid

WDOGPOLL '1': Watchdog status

SYNCIPOLL '1': SYNCI status (no valid SYNCI detected)

CAPOLL '1': H-register coefficient available for readout status

TTPOLL '1': Test termination because of enabled test timeslot status

TEPOLL '1': Timer expired status

UCCPOLL '1': UCC status

TSMPOLL '1': Timeslot monitor status

SFATSES[2:0] (Addr.: 36H): Super frame alarm and requested timeslot en/disable status

-	-	-	-	-	TSEN	TSEN	SFA
					VALID		

TSENVALID '1': TSEN value for the requested TS in register ATE is valid

'0': TSEN value not valid since channel defined in register ATE

is not detected yet

TSEN '1': requested TS in register ATE is enabled, no test recommended

'0': requested TS in register ATE is disabled, test permissible

SFA '1': alarm, because not synchronized to PCM30 superframe

'0': no alarm, because either synchronization to PCM superframe or

TS16 CAS evaluation is deactivated (Bit CONFTS16.ENTS16 = '0')

SOTP[6:0] (Addr.: 3DH): Send path output test pattern

-	SOTP[6]	SOTP[5]	SOTP[4]	SOTP[3]	SOTP[2]	SOTP[1]	SOTP[0]
---	---------	---------	---------	---------	---------	---------	---------

SOTP[6:0] Result of background test of timeslot defined in register ATE,

amplitude A-/µ-Law encoded

TESTSTAT[7:0] (Addr.: 3EH): Background test status signals

DISPS	DIS	NLP	FREEZE	HRESET	ERL	FCM	NO
							SPEECH

This register contains results of background test of timeslot defined in register ATE

DISPS '1': 2100 Hz tone with phase shift detected

'0': no 2100 Hz tone with phase shift detected

DIS '1': 2100 Hz tone detected

'0': no 2100 Hz tone detected

NLP '1': NLP active

'0': NLP disabled (bypassed)

FREEZE '1': H-Register frozen

'0': H-Register not frozen

HRESET '1': H-Register reset

Data Sheet 119 Rev. 2, 2004-07-28

'0': H-Register not reset

ERL '1': echo return loss > value of BYPTHL[4:0]

'0': echo return loss not > value of BYPTHL[4:0]

FCM '1': fast convergence mode

'0': normal convergence mode

NOSPEECH '1': no speech detected

'0': speech detected

DIRAM[7:0] (Addr.: 67H): requested **D**ata **I**nput **RAM** value

| DIRAM |
|-------|-------|-------|-------|-------|-------|-------|-------|
| [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |

DIRAM[7:0] Requested UCC input data for UCC frame defined in

WRUCC.ARAM[4:0]

UCCOLD[7:0] (Addr.: 68H): Changed UCC input data old value

UCC								
OLD[7]	OLD[6]	OLD[5]	OLD[4]	OLD[3]	OLD[2]	OLD[1]	OLD[0]	

UCCOLD[7:0] Data prior to the modification of the modified UCC frame that caused

the UCC interrupt. The corresponding frame number of the modified

frame value is stored in UCCSTAT.AFR[4:0].

UCCNEW[7:0] (Addr.: 69H): Changed UCC input data new value

| UCC |
|--------|--------|--------|--------|--------|--------|--------|--------|
| NEW[7] | NEW[6] | NEW[5] | NEW[4] | NEW[3] | NEW[2] | NEW[1] | NEW[0] |

UCCNEW[7:0] Modified data of the changed UCC frame that caused the UCC

interrupt. The corresponding frame number of the modified

frame value is stored in UCCSTAT.AFR[4:0].

UCCSTAT[6:0] (Addr.: 6AH): UCC status

INVALID	NO	AFR[4]	AFR[3]	AFR[2]	AFR[1]	AFR[0]
	SYNC					

INVALID '1': possible data loss, because old interrupt has not yet been

processed

'0': modified data valid

NOSYNC '1': UCC unit is not sy

'1': UCC unit is not synchronized to SYNCI pulse, i.e. the SYNCI pulse period is not an integer multiple of 32 UCC frames (4ms).

'0': UCC unit is synchronized to SYNCI pulse, i.e. a SYNC pulse with a period of an integer multiple of 32 UCC frames (4ms) was

detected

AFR[4:0] value corresponds to the UCC frame that was modified

Note: Read access to this register is identified as acknowledge for the UCC interrupt and should be read after UCCOLD and UCCNEW. This access resets the bit STATUS.UCCPOLL and enables a new UCC interrupt.

AFCD1[7:0] (Addr.: 7BH): AFI Filter Coefficient Data 1

| COEF |
|------|------|------|------|------|------|------|------|
| [13] | [12] | [11] | [10] | [9] | [8] | [7] | [6] |

Read access to this register is identified as acknowledgment for the coefficient availibility (CA) interrupt. If an additional access to register AFCD2 and (or) AFCD3 is necessary, register AFCD1 should be read after AFCD2 and (or) AFCD3. This access resets the bit STATUS.CAPOLL and enables a new CA interrupt. The conversion from the 14 bit register value to the linear value is depicted in **Table 37**.

COEF[13:6] MSB of monitored filter coefficient

AFCD2[7:0] (Addr.: 7CH): AFI Filter Coefficient Data 2

ISLAST	-	COEF	COEF	COEF	COEF	COEF	COEF
		[5]	[4]	[3]	[2]	[1]	[0]

ISLAST '1': COEF is last coefficient for channel readout

COEF[5:0] LSB of monitored coefficient. The conversion from the 14 bit register

value to the linear value is depicted in Table 37.

Table 37 AFI Coefficients to Absolute Linear Value Conversion

	3 2 1 0 9																		L	ine	ear	Va	alu	е							
1	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0
S	0	0	0	Α	В	С	D	Е	F	G	Н	I	J	S	0	0	0	0	0	0	0	Α	В	С	D	Е	F	G	Н	I	J
S	0	0	1	Α	В	С	D	Е	F	G	Н	I	J	S	0	0	0	0	0	0	1	Α	В	С	D	Ε	F	G	Н	I	J
S	0	1	0	Α	В	С	D	Е	F	G	Н	1	J	S	0	0	0	0	0	1	Α	В	С	D	Е	F	G	Н	I	J	0
S	0	1	1	Α	В	С	D	Е	F	G	Н	I	J	S	0	0	0	0	1	Α	В	С	D	Е	F	G	Н	I	J	0	0

Data Sheet 121 Rev. 2, 2004-07-28

Table 37 AFI Coefficients to Absolute Linear Value Conversion

S	1	0	0	Α	В	C	D	Е	F	G	I	ı	J	S	0	0	0	1	Α	В	\circ	D	П	F	G	I	_	J	0	0	0
S	1	0	1	Α	В	С	D	Ε	F	G	Τ	1	J	S	0	0	1	Α	В	С	D	Ε	F	G	Η	Ι	J	0	0	0	0
S	1	1	0	Α	В	С	D	Ε	F	G	Н	I	J	S	0	1	Α	В	С	D	Ε	F	G	Н	I	J	0	0	0	0	0
S	1	1	1	Α	В	С	D	Ε	F	G	Н	I	J	S	1	Α	В	С	D	Ε	F	G	Н	1	J	0	0	0	0	0	0

AFCD3[7:0] (Addr.: 7DH): AFI Filter Coefficient Data 3

AUX								
COEF								
[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	

AUXCOEF[9:2] Most significant bits of the auxiliary coefficient monitored

The following read registers contain channel individual values. The channel number defined in register CTRLTSMON.MCH[4:0]

Since MVAL is the interrupt source indicating an update of the monitor registers it must be reset after the monitor registers are read out in order to avoid an unwanted interrupt.

MONSI[7:0] (Addr.: 29H): Monitor send input signal (A-/µ-Law encoded)

| MON |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SI[7] | SI[6] | SI[5] | SI[4] | SI[3] | SI[2] | SI[1] | SI[0] |

The content of this register is PCM encoded.

MONSO[7:0] (Addr.: 2AH): **Mon**itor **s**end **o**utput signal (A-/μ-Law encoded)

| MON |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SO[7] | SO[6] | SO[5] | SO[4] | SO[3] | SO[2] | SO[1] | SO[0] |

The content of this register is PCM encoded.

MONRI[7:0] (Addr.: 2BH): Monitor of receive input signal (A-/µ-Law encoded)

| MON |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RI[7] | RI[6] | RI[5] | RI[4] | RI[3] | RI[2] | RI[1] | RI[0] |

The content of this register is PCM encoded

MONSIL[7:0] (Addr.: 1EH): Monitor send input level

| MON |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SIL[7] | SIL[6] | SIL[5] | SIL[4] | SIL[3] | SLI[2] | SIL[1] | SIL[0] |

The content of this register is encoded logarithmically. The maximum value of 191 corresponds to 3 dBm0. A decrease of 16 is equivalent to a decrease of 6 dB. The following table displays the relation between the register value and the dBm0 value.

Register '	Value	Level [dBm0]/[dB]	Register '	Value	Level [dBm0]/[dB]
HEX	linear		HEX linear		
C0	191	+3	58	88	-36
B8	184	0	50	80	-39
B0	176	-3	48	72	-42
A8	168	-6	40	64	-45
A0	160	-9	38	56	-48
96	152	-12	30	48	-51
90	144	-15	28	40	-54
88	136	-18	20	32	-57
80	128	-21	18	24	-60
78	120	-24	10	16	-63
70	112	-27	08	8	-66
68	104	-30	1	1	-69
60	96	-33	0	0	- infinity

Table 38 Conversion of Monitor Register Values to dBm0 Values

MONSOL[7:0] (Addr.: 1FH): Monitor send output level

| MON |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SOL[7] | SOL[6] | SOL[5] | SOL[4] | SOL[3] | SOL[2] | SOL[1] | SOL[0] |

The content of this register is encoded logarithmically. For conversion to dBm0 see Table 38.

MONRIL[7:0] (Addr.: 20H): Monitor of receive input level

| MON |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RIL[7] | RIL[6] | RIL[5] | RIL[4] | RIL[3] | RIL[2] | RIL[1] | RIL[0] |

The content of this register is encoded logarithmically. For conversion to dBm0 see Table 38.

MONOFSI[5:0] (Addr.: 21H): Monitor offset in send path input

-	-	MON	MON	MON	MON	MON	MON
		OFSI[5]	OFSI[4]	OFSI[3]	OFSI[2]	OFSI[1]	OFSI[0]

The content of this register is a linear value in "1 complement" notation.

MONOFSO[5:0] (Addr.: 22H): Monitor offset in send path output

-	-	MON	MON	MON	MON	MON	MON
		OFSO[5]	OFSO[4]	OFSO[3]	OFSO[2]	OFSO[1]	OFSO[0]

The content of this register is a linear value in "1 complement" notation.

MONAEL[7:0] (Addr.: 23H): Monitor artificial echo level

| MON |
|--------|--------|--------|--------|--------|--------|--------|--------|
| AEL[7] | AEL[6] | AEL[5] | AEL[4] | AEL[3] | AEL[2] | AEL[1] | AEL[0] |

The content of this register is encoded logarithmically. For conversion to dBm0 see Table 38.

MONBNL[6:0] (Addr. 24H): Monitor background noise level

-	MON						
	BNL[6]	BNL[5]	BNL[4]	BNL[3]	BNL[2]	BNL[1]	BNL[0]

The content of this register is encoded logarithmically. For conversion to dBm0 see Table 38.

Data Sheet 124 Rev. 2, 2004-07-28

MONERL[7:0] (Addr.: 25H): Monitor Echo return loss

| MON |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ERL[7] | ERL[6] | ERL[5] | ERL[4] | ERL[3] | ERL[2] | ERL[1] | ERL[0] |

The content of this register is encoded logarithmically. For conversion to dB see **Table 38**.

MONCL[7:0] (Addr.: 26H): Monitor combined loss without NLP

| MON |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CL[7] | CL[6] | CL[5] | CL[4] | CL[3] | CL[2] | CL[1] | CL[0] |

The content of this register is encoded logarithmically. For conversion to dB see Table 38.

MONNLPTHL[7:0] (Addr.: 27H): Monitor NLP threshold level

| MON |
|--------|--------|--------|--------|--------|--------|--------|--------|
| NLP |
| THL[7] | THL[6] | THL[5] | THL[4] | THL[3] | THL[2] | THL[1] | THL[0] |

The content of this register is encoded logarithmically. For conversion to dBm0 see Table 38.

MONOCDT[7:0] (Addr.: 28H): Monitor overcompensation and double talk hang-over time

MON	MON	MON	MON	MON	MON	MON	MON
OCE[3]	OCE[2]	OCE[1]	OCE[0]	DTHOT	DTHOT	DTHOT	DTHOT
				[3]	[2]	[1]	[0]

MONOCE[3:0] Overcompensation evaluation MONDTHOT[3:0] Double talk hang-over time

MONSTAT1[7:0] (Addr.: 2CH): Monitor of internal/external control states 1

MNS	М	М	М	М	М	М	М
	DIS	DIS	DISPS	HRES	FREEZE	NLP	ECBP
	NOSP						

MNS '1': "no-voice" detected

MDISNOSP '1': 2100Hz detected but without speech protection

MDIS '1': 2100Hz detected with speech protection

MDISPS '1': 2100Hz with phase shift and speech protection detected

MHRES '1': H-Register reset MFREEZE '1': H-Register frozen

MNLP '1': NLP active

MECBP '1': Entire echo cancellation path bypassed

MONSTAT2[7:0] (Addr.: 2DH): Monitor of internal/external control states 2

М	М	М	М	М	М	М	М
ERLBP	DT	FCM	CSPR	NR7	NR7	NR7	IDLE
				NOSP	DIS	BY	

The contents of individual bits of this register can also be output at pin FLEXMON1 or FLEXMON2 if configured in register CONFLEXMON.

MERLBP '1': Subtractor bypassed because ERL > value of BYPTHL[4:0]
MDT '1': near end subscriber is louder than the far end subscriber (true

double talk)

MFCM '1': Fast convergence mode active

MCSPR '1': Convergence stability protection for non-speech signals active MNR7NOSP '1': 2010Hz (SS Nr.7) detected but without speech protection MNR7DIS '1': 2010Hz speech protection: second level reached (H-Register

reset)

MNR7BY '1': 2010Hz speech protection: first level reached (bypass of entire

canceller)

MIDLE '1': Idle channel detected

MONSTAT3[7:0] (Addr.: 2EH): Monitor of internal/external control states 3

M	М	М	М	MSC	MSC	MSC	MFLEX	l
TS16	UCCD	UCCFX	SCDIS	NLPDIS	FREEZE	CONV	SCTR	Ì
						DIS		l

MTS16 '1': channel disabled by TS16 CAS evaluation

MUCCD '1': disable by UCC-DIS-Bit active

MUCCFX '1': UCC-FX bit active

MSCDIS

'1': serial control signal DIS active

MSCNLPDIS

'1': serial control signal NLPDIS active

MSCFREEZE

'1': serial control signal FREEZE active

MSCCONVDIS '1': serial control signal CONVDIS active MFLEXSCTR '1': serial control signal FLEXSCTR active

Data Sheet 127 Rev. 2, 2004-07-28

6 Electrical Characteristics

6.1 Absolute Maximum Ratings

Parameter		Symbol	Limit Values	Unit
Ambient temperature under bias	PEB PEF	T_{A}	0 to 70 - 40 to 85	°C °C
Storage temperature		T_{stg}	- 65 to 125	°C
IC supply voltage		V_{DD}	0 to 3.6	V
Voltage on any functional pin (not $V_{\rm SS}$) with respect to ground	$T_{ m DD}$ and	V_{S}	-0.4 to 5.5	V
ESD robustness ¹⁾ HBM: 1.5 k Ω , 100 pF		$V_{\rm ESD,HBM}$	2000	V

¹⁾ According to MIL-Std 883D, method 3015.7 and ESD Ass. Standard EOS/ESD-5.1-1993.

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

6.2 Operating Range

Parameter	Symbol	Limit '	Values	Unit	Test Condition
		min.	max.		
Ambient temperature PEB	T_{A}	0	70	°С	
PEF	T_{A}	-40	85	°C	
Supply voltage	V_{DD}	3.0	3.6	V	
Ground	V_{SS}	0	0	٧	

Note: In the operating range, the functions given in the circuit description are fulfilled.

Data Sheet 128 Rev. 2, 2004-07-28

6.3 DC Characteristics

Parameter	Symbol	Lim	it Values	Unit	Notes
		min.	max.		
Input low voltage	V_{IL}	- 0.4	0.8	٧	1)
Input high voltage	V_{IH}	2.0	5.5	٧	
Output low voltage	V_{OL}		0.45	V	$I_{\rm OL}$ = 4 mA ²⁾ $I_{\rm OL}$ = 2.5 mA ³⁾
Output high voltage	V_{OH}	2.4		V	$I_{OH} = -1.0 \text{ mA}$
Avg. power supply current	I _{CC} (AV		350 ⁴⁾	mA	$V_{\rm DD}$ = 3.3 V, $T_{\rm A}$ = 25 °C:
Input leakage current	I_{IL}		5	μА	$V_{\rm DD}$ = 3.3 V, GND = 0 V; all other pins are floating; $V_{\rm IN}$ = 0 V,
Output leakage current	I _{OZ}		5	μΑ	V_{DD} = 3.3 V, GND = 0 V; V_{OUT} = 0 V,

¹⁾ Permanent exposure to negative input voltages may result in minor degradation of lifetime

The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_A = 25^{\circ}$ C and the given supply voltage.

Data Sheet 129 Rev. 2, 2004-07-28

²⁾ Apply to the following O or I/O pins: UUPIO0, UPIO1, UPIO2, UPIO3, AD[0:6], RDY, UPRES, UPRES, INT, RO, SO, TMFBO, CLK4O, SYNCO, SCLKO, SDECO, UCCO, TUCCO

³⁾ Apply to all the I/O and O pins that do not appear in the list in note Figure 2)

⁴⁾ Not subject to production test - verified by design/characterization.

6.4 AC Characteristics

Parameter	Symbol	Limit Values		Unit	Notes	
		min.	max.			
Input low voltage	V_{il}		0.45	V	1)	
Input high voltage	V_{ih}	2.4		V		
Output low voltage	V_{ol}		0.8	V	$I_{\text{ol}} = 4 \text{ mA}^{2)}$ $I_{\text{ol}} = 2.5 \text{ mA}^{3)}$	
Output high voltage	V_{oh}	2.0		٧	$I_{ol} = -$ 1.0 mA	

¹⁾ Permanent exposure to negative input voltages may result in minor degradation of lifetime

The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_A = 25^{\circ}$ C and the given supply voltage

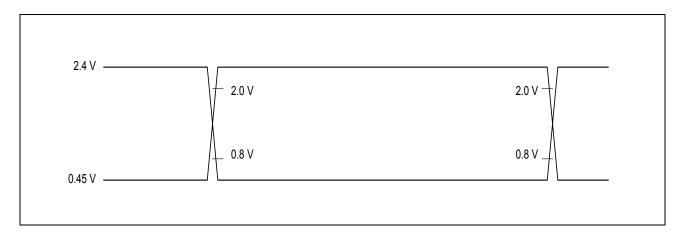


Figure 29 Input/Output Waveforms for AC-Tests

Data Sheet 130 Rev. 2, 2004-07-28

²⁾ Apply to the following O or I/O pins: UPIO0, UPIO1, UPIO2, UPIO3, AD[0:6], RDY, UPRES, UPRES, INT, RO, SO, TMFBO, CLK4O, SYNCO, SCLKO, SDECO, UCCO, TUCCO

³⁾ Apply to all the I/O and O pins that do not appear in the list in note Figure 2)

6.5 Capacitances

Parameter	Symbol	Limit Values		Unit	Notes	
		min.	max.			
Clock input capacitance	C_{XIN}		10	pF	$f_{\rm C}$ = 1 MHz	
Clock output capacitance	C_{XOUT}		10	pF	The pins, which are	
Input capacitance	C_{IN}		10	pF	not under test, are connected to GND	
Output capacitance	C_{OUT}		10	pF		

Data Sheet 131 Rev. 2, 2004-07-28

6.6 Timing Diagrams

Note: All timing parameters are no subject to production tests. These parameters are verified by design/characterization only.

6.6.1 Clock Timing

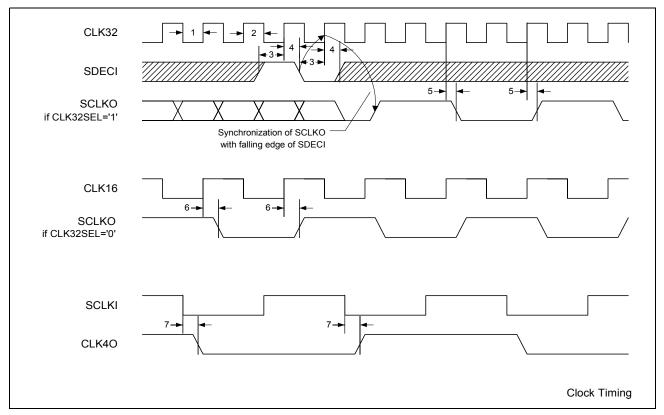


Figure 30 Clock Timing

Table 39 Clock Timing Characteristics (preliminary)

No.	Name	Parameter	Limit Values		Unit
			min.	max.	
1	t_clk32_low	CLK32 low time	12		ns
2	t_clk32_high	CLK32 high time	12		ns
3	t_sdeci_setup	SDECI setup time before CLK32Y	10		ns
4	t_sdeci_hold	SDECI hold time after CLK 32Y	15		ns
5	t_sclko_delay_clk32	SCLKO output delay after CLK32Y		30	ns

Data Sheet 132 Rev. 2, 2004-07-28

Table 39 Clock Timing Characteristics (preliminary) (cont'd)

No.	Name	Parameter	Limit Values		Unit
			min.	max.	
6	t_sclko_delay_clk16	SCLKO output delay after CLK16Y	0	30	ns
7	t_clk4o_delay	CLK4O output delay after SCLKI Z	0	30	ns

Table 40 Periods of Clock Signals

No.	Parameter	min.	nom.	Unit
	CLK32	30	30.52	ns
	CLK16		61.04	ns
	SCLKI		122.07	ns
	CLK4O		244.14	ns

6.6.2 PCM Signal Timing and Frame Alignment

The SIDEC requires the MSB (bit7) first and the LSB (bit0) last as input.

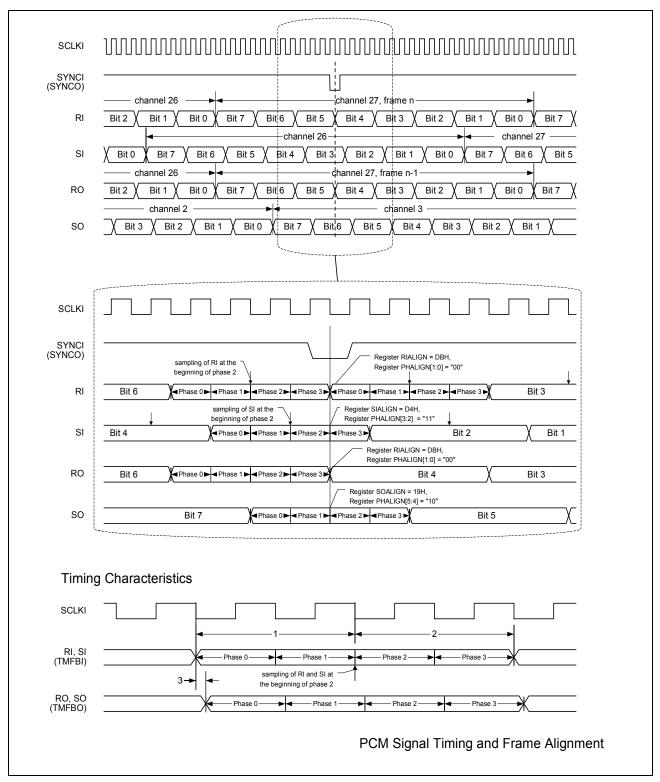


Figure 31 PCM Signal Timing and Frame Alignment

Note: Above values are examples only. PCM frame alignment with respect to the first detection of an active SYNCI (or SYNCO: If no SYNCI is applied, SYNCO takes over the part and role of SYNCI) with the falling edge of SCLKI can be configured by writing to the

Data Sheet 134 Rev. 2, 2004-07-28

registers RIALIGN, SIALIGN an SOALIGN. For finer adjustments, the valid bit phase of the PCM signals at the first detection of an active SYNCI with the falling edge of SCLKI can be configured by writing to the register PHALIGN. The configured frame and bit phase alignment always denotes the beginning of the ideal bit phase (no signal delay) at the falling edge of SCLKI.

PCM inputs are always sampled with the falling edge of SCLKI at the beginning of bit phase 2, outputs are clocked with the falling edge of SCLKI at the beginning of bit phase 0. Unless not bypased the PCM output RO has a fixed delay of one PCM frame (125 μ s) with respect to RI.

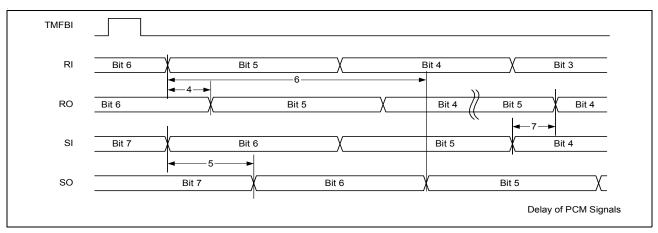


Figure 32 Delay of PCM Signals

Figure 33 illustrates the synchronization of the 2048 kBit/s PCM and UCC signal for a low active SYNCI signal with respect to the internal 8192 kHz SCLKI signal. If SYNCI is sampled with the falling edge of SCLKI (CONFCC.SSCLKEDGE='0') this edge is the synchronization point for PCM and UCC signals. If SYNCI is sampled with the rising edge of SCLKI (CONFCC.SSCLKEDGE='1') the next falling SCLKI edge is the synchronization point for PCM and UCC signals. The SYNCO signal may only be used instead of the SYNCI signal if the UCC Interface is not used

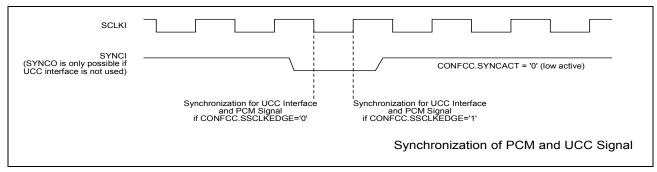


Figure 33 PCM and UCC Signal synchronization to SCLKI and SYNCI

Data Sheet 135 Rev. 2, 2004-07-28

Table 41 PCM Signal Timing and Frame Characteristics (preliminary)

No.		Parameter	Limit Values		Unit
			min.	max.	
1	t_pcm_setup	PCM input (RI,SI) input setup time before sampling with SCLKIZ	15		ns
2	t_pcm_hold	PCM input (RI,SI) input hold time after sampling with SCLKIZ	15		ns
3	t_pcm_delay	PCM output (RO,SO) delay after SCLKIZ	0	30	ns
4	t_pcm_ri2ro_delay	delay for bypass RI to RO	0	30	ns
5	t_pcm_si2so_delay	delay for bybass SI to SO	0	30	ns
6	t_pcm_ri2so_delay	delay for bypass RI to SO	0	30	ns
7	t_pcm_si2ro_delay	delay for bypass SI to RO	0	30	ns

6.6.3 Timing of SYNCI and SYNCO

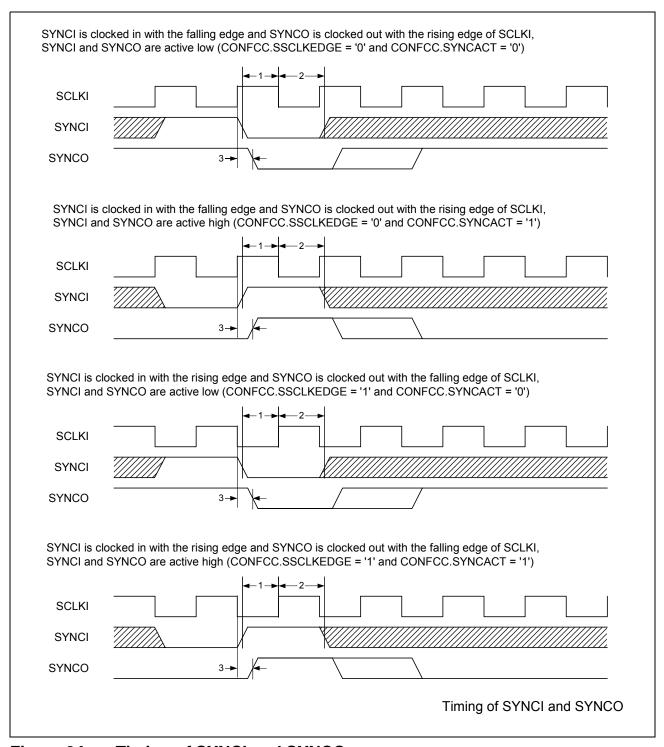


Figure 34 Timing of SYNCI and SYNCO

Figure 34 shows the timing of the synchronization pulses for different configurations.

Note: The duration of SYNCO pulse can be configured by register CONFCC.SYNCODUR to either one or two SCLKI (8.192 MHz) periods.

Data Sheet 137 Rev. 2, 2004-07-28

Table 42 Characteristics of Timing of SYNCI and SYNCO (preliminary)

No.	Name	Parameter	Limit Values		Unit
			min.	max.	
1	t_synci_setup	SYNCI setup time before active sampling edge of SCLKI	10		ns
2	t_synci_hold	SYNCI hold time after active sampling edge of SCLKI	10		ns
3	t_synco_delay	SYNCO delay after active output edge of SCLKI	0	30	ns

6.6.4 Clock Timing within External VCO Capture Range

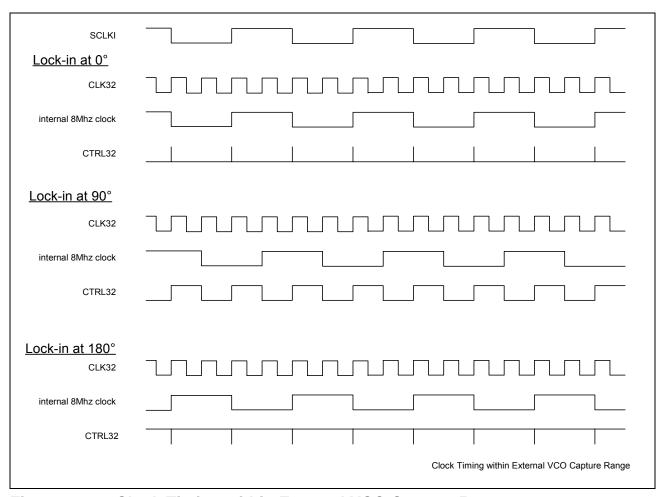


Figure 35 Clock Timing within External VCO Capture Range

In case a 32.768 MHz clock has to be generated and synchronized to the system clock at SCLKI, the signal at pin CTRL32 can be used to control an external VCO. The output at CTRL32 is the signal at SCLKI that is internally 'xored' with an internal 8.192 MHz clock that is derived from the signal pin CLK32 by division by 4. For proper operation of the SIDEC the system clock SCLKI and the internal 8.192 MHz clock must lock in within the capture range from 0° to 180°. CTRL32 can be inverted by bit CONFCC.INVCTRL32 for use of VCOs that increase the frequency with falling voltage.

The internal 8.192 MHz clock can be monitored at pin SCLKO with a delay of three CLK32 periods plus internal signal delay if pin CLK32SEL is set to logic '1'.

6.6.5 Serial Interface (Controlling and Monitoring) Timing

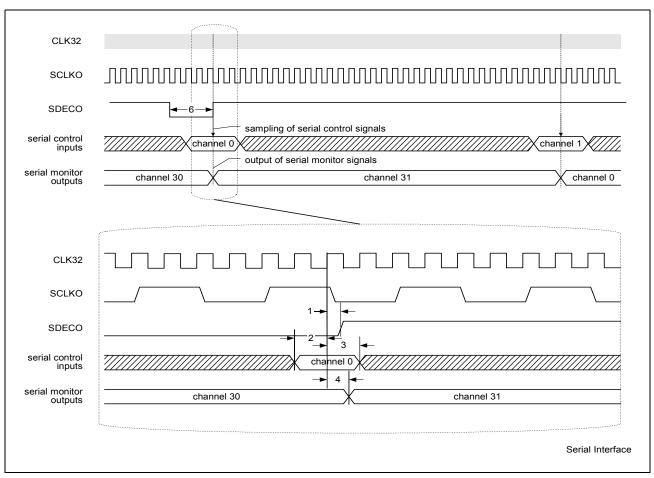


Figure 36 Serial Interface (Controlling and Monitoring) Timing

Table 43 Serial Interface (Controlling and Monitoring) Timing (preliminary)

No.	Name	Parameter	Limit Values		Unit
			min.	max.	1
1	t_sdeco_delay	SDECO output delay after CLK32Y	0	30	ns
2	t_sctr_setup	Serial control signal setup time before sampling with CLK32Y	15		ns
3	t_sctr_hold	Serial control signal hold time after sampling with CLK32Y	15		ns

Data Sheet 140 Rev. 2, 2004-07-28

Table 43 Serial Interface (Controlling and Monitoring) Timing (preliminary)

No.	Name	Parameter	Limit	Unit	
			min.	max.	
4	t_smon_delay	Serial monitor signal output delay after CLK32Y	0	33	ns
5		SDECO duration	16 * CLK32 period		

6.6.6 UCC Interface Signal Timing and Frame Alignment

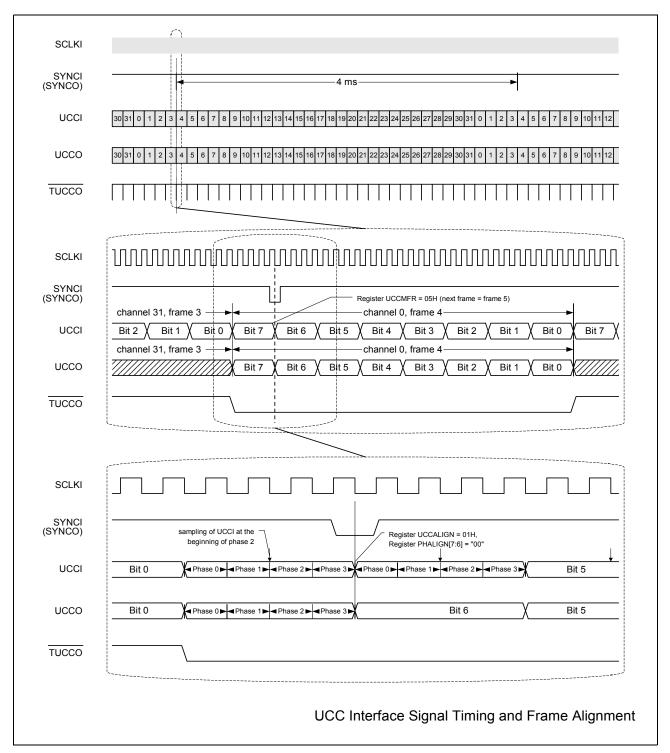


Figure 37 UCC Interface Signal Timing and Frame Alignment

Note: Above values are examples only. For the use of the UCC Interface a SYNCI signal with a period of 4 ms (equivalent to one multiframe) must be applied to the SIDEC. UCC frame and multiframe alignment with respect to the first detection of an active SYNCI with the falling edge of SCLKI can be configured by writing to the registers UCCALIGN

Data Sheet 142 Rev. 2, 2004-07-28

and UCCMFR. For finer adjustments, the valid bit phase of the UCC signals at the first detection of an active SYNCI with the falling edge of SCLKI can be configured by writing to the two MSBs of register PHALIGN.

The configured frame and bit phase alignment always denotes the beginning of the ideal bit phase (no signal delay) at the falling edge of SCLKI. If SYNCI is sampled with the falling edge of SCLKI (CONFCC.SSCLKEDGE='0') this edge is the synchronization point for PCM and UCC signals. If SYNCI is sampled with the rising edge of SCLKI (CONFCC.SSCLKEDGE='1') the next falling SCLKI edge is the synchronization point for PCM and UCC signals. This behavior is identical to the PCM signal behavior and illustrated in Figure 33 in Chapter 6.6.2

UCC inputs are always sampled with the falling edge of SCLKI at the beginning of bit phase 2, UCCO and TUCCO are clocked out with the falling edge of SCLKI at the beginning of bit phase 0. The value of register UCCMFR denotes the frame number of the next complete frame that starts with phase 0, bit 7, channel 0 **after** the first detection of an active SYNCI with the falling edge of SCLKI (see figure below).

Data Sheet 143 Rev. 2, 2004-07-28

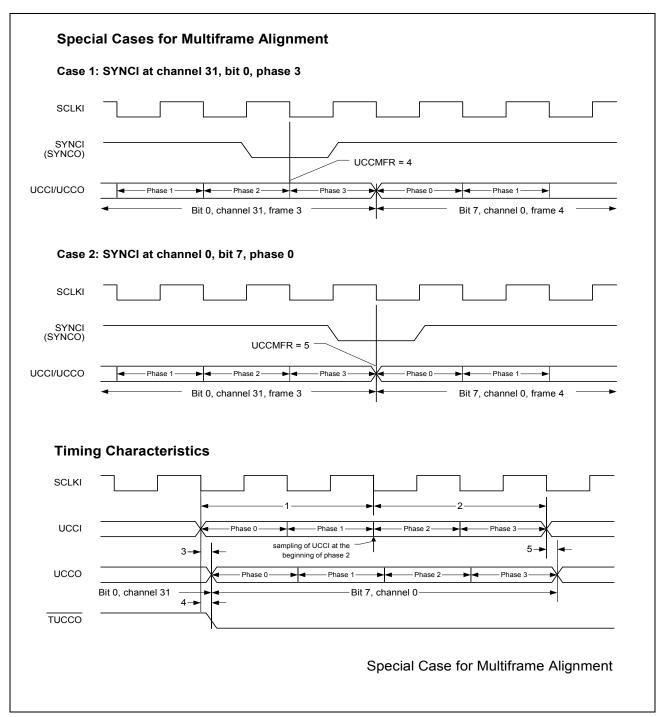


Figure 38 Special Cases for Multiframe Alignment and Timing Characteristics

Data Sheet 144 Rev. 2, 2004-07-28

Table 44 UCC Interface Signal Timing and Frame Alignment (preliminary)

No.	Name	Parameter	Limit Values		Unit
			min.	max.	
1	t_ucci_setup	UCCI input setup time before sampling with SCLKIZ	15		ns
2	t_ucci_hold	UCCI input hold time after sampling with SCLKIZ	15		ns
3	t_ucco_delay	UCCO output delay after SCLKIZ	0	30	ns
4	t_tucco_delay	TUCCO output delay after SCLKIZ	0	30	ns
5	t_ucc_reflect_delay	Propagation delay from UCCI to UCCO for UCC reflect mode	0	30	ns

6.6.7 Speech Highway Control Signals for CAS in T1 Systems

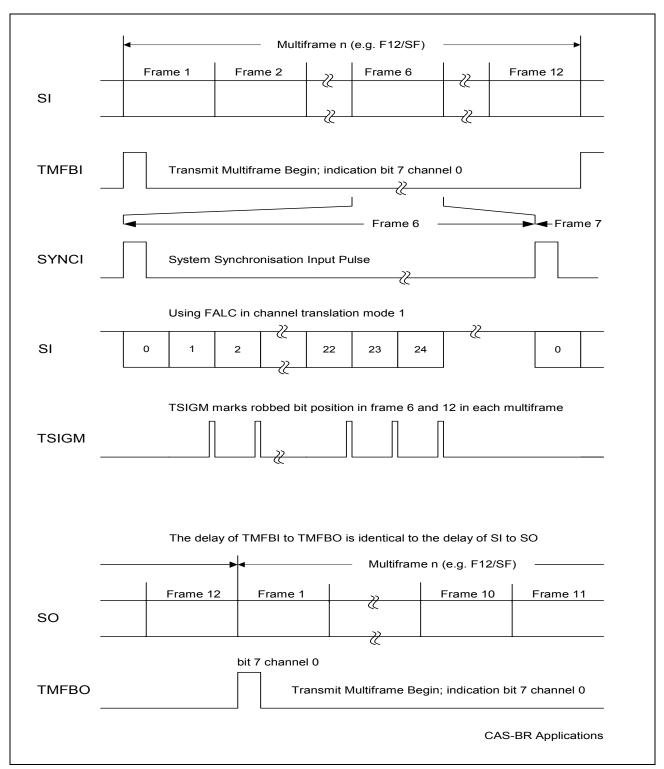


Figure 39 Timing of Supporting signals for CAS-BR Applications

Data Sheet 146 Rev. 2, 2004-07-28

6.6.8 Microprocessor Interface

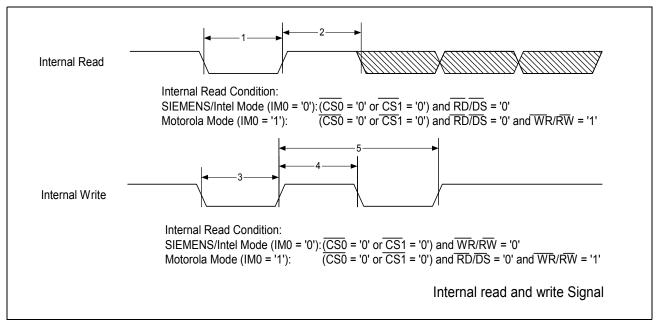


Figure 40 Internal Read Signal and Internal Write Signal

Table 45 Preliminary Internal Read and Write Signal Timing

No.	Parameter	Limit Values		Unit
		min.	max.	
1	Active time	40		ns
2	Inactive time	40		ns
3	Active time	40		ns
4	Inactive time	40		ns
5	Interval between two active rising write edges	120		ns

The written value of a register wil be valid for read back 120 ns after rising edge of the $\overline{WR}/R\overline{W}$ signal.

Data Sheet 147 Rev. 2, 2004-07-28

6.6.8.1 Intel Mode (IM0='0')

a) Multiplexed Mode (IM1='0')

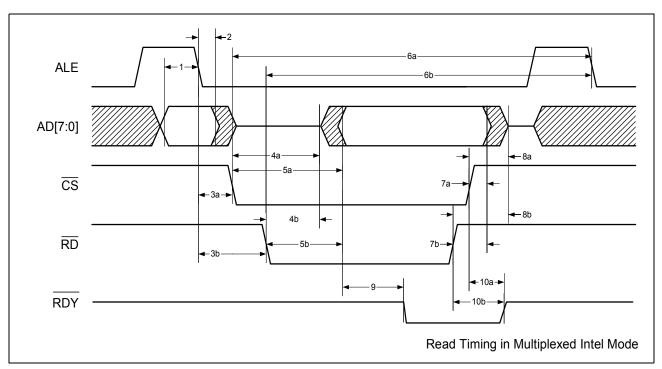


Figure 41 Read Timing in Multiplexed Intel Mode (IM0='0', IM1='0')

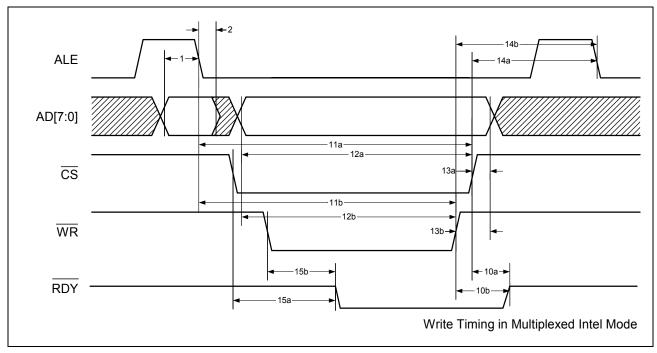


Figure 42 Write Timing in Multiplexed Intel Mode (IM0='0', IM1='0')

Data Sheet 148 Rev. 2, 2004-07-28

b) Demultiplexed Mode (IM1='1')

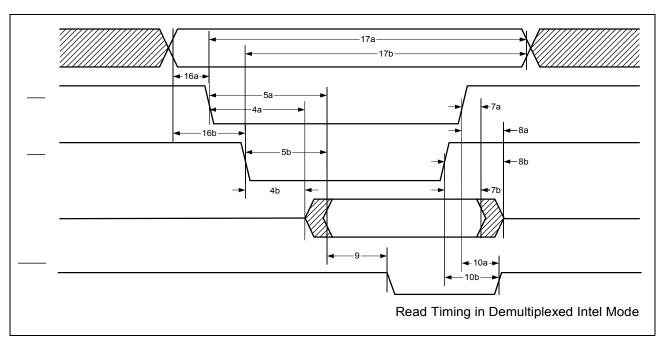


Figure 43 Read Timing in Demultiplexed Intel Mode (IM0='0', IM1='1')

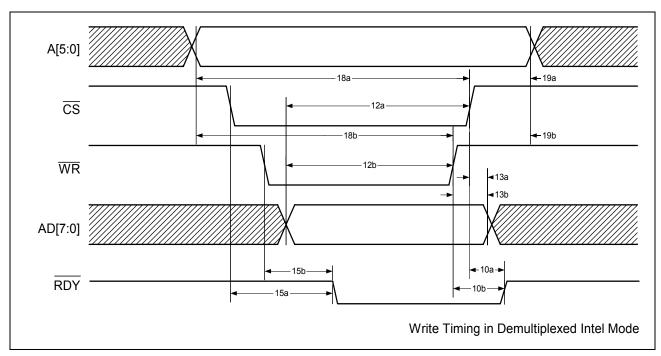


Figure 44 Write Timing in Demultiplexed Intel Mode (IM0='0', IM1='1')

Data Sheet 149 Rev. 2, 2004-07-28

6.6.8.2 Motorola Mode (IM0='1')

a) Multiplexed Mode (IM1='0')

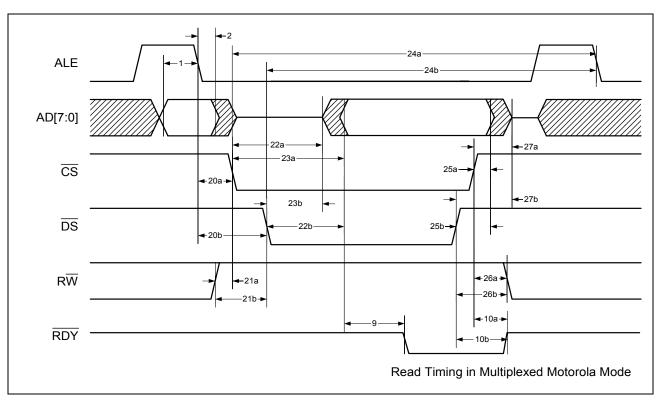


Figure 45 Read Timing in Multiplexed Motorola Mode (IM0='1', IM1='0')

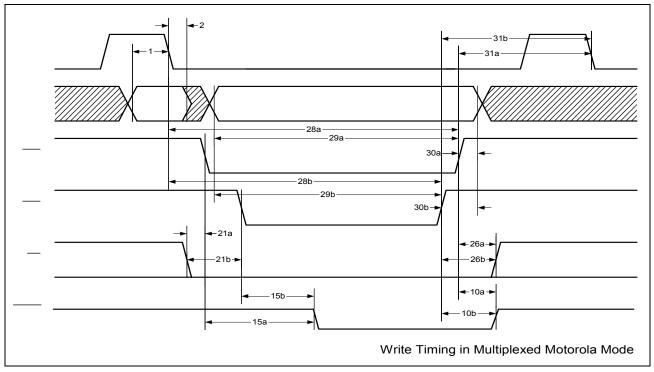


Figure 46 Write Timing in Multiplexed Motorola Mode (IM0='1', IM1='0')

Data Sheet 150 Rev. 2, 2004-07-28

b) Demultiplexed Mode (IM1='1')

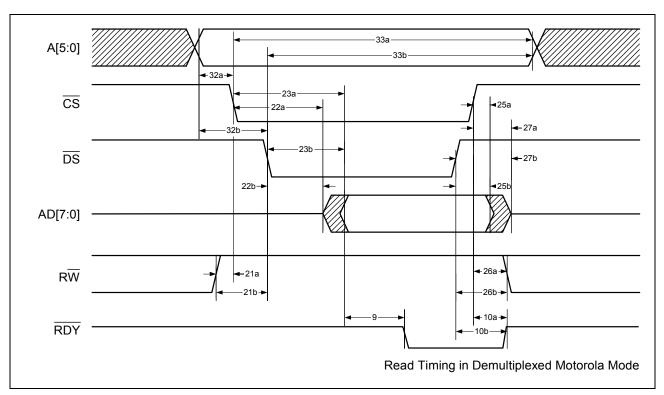


Figure 47 Read Timing in Demultiplexed Motorola Mode (IM0='1', IM1='1')

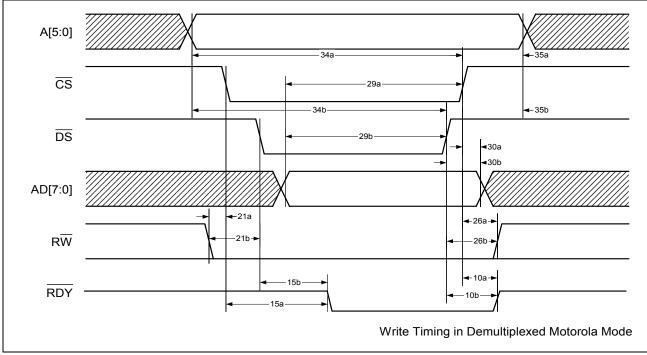


Figure 48 Write Timing in Demultiplexed Motorola Mode (IM0='1', IM1='1')

Data Sheet 151 Rev. 2, 2004-07-28

Table 46 Prliminary Microprocessor Interface Timing Values

No.	Parameter		Limit Values	
		min.	max.	
1	Address setup before ALE falling edge	15		ns
2	Address hold after ALE falling edge	10		ns
3a	ALE falling edge before CS active if RD asserted	0		ns
3b	ALE falling edge before RD active if CS asserted	0		ns
4a	AD output after CS active if RD asserted	30	90	ns
4b	AD output after RD active if CS asserted	30	90	ns
5a	Read data valid after CS active if RD asserted	30	90	ns
5b	Read data valid after RD active if CS asserted	30	90	ns
6a	ALE rising edge after CS active if RD asserted	100		ns
6b	ALE rising edge after CS active if RD asserted	100		ns
7a	Read data hold after CS inactive if RD asserted	0		ns
7b	Read data hold after RD inactive if CS asserted	0		ns
8a	AD tristate after CS inactive if RD asserted	0	25	ns
8b	AD tristate after RD inactive if CS asserted	0	25	ns
9	RDY asserted after read data valid	15	50	ns
10a	RDY tristate after CS inactive if RD, WR or DS asserted	0	20	ns
10b	RDY tristate after RD, WR or DS inactive if CS asserted	0	20	ns
11a	ALE falling edge before CS rising edge if WR asserted	25		ns
11b	ALE falling edge before WR rising edge if CS asserted	25		ns

Table 46 Prliminary Microprocessor Interface Timing Values (cont'd)

No.	Parameter		Limit Values	
		min.	max.	
12a	Write data setup before CS rising edge if WR asserted	25		ns
12b	Write data setup before WR rising edge if CS asserted	25		ns
13a	Write data hold after CS rising edge if WR asserted	20		ns
13b	Write data hold after WR rising edge if CS asserted	20		ns
14a	CS rising edge before ALE falling edge if WR asserted	20		ns
14b	WR rising edge before ALE falling edge if CS asserted	20		ns
15a	RDY asserted after CS active if WR asserted or DS asserted and RW='0'	30	90	ns
15b	RDY asserted, if CS asserted, after WR active or DS active and RW='0'	30	90	ns
16a	Address valid before CS active if RD asserted	0		ns
16b	Address valid before RD active if CS asserted	0		ns
17a	Address hold after CS active if RD asserted	100		ns
17b	Address hold after RD active if CS asserted	100		ns
18a	Address setup before CS rising edge if WR asserted	25		ns
18b	Address setup before WR rising edge if CS asserted	25		ns
19a	Address hold after CS rising edge if WR asserted	20		ns
19b	Address hold after WR rising edge if CS asserted	20		ns
20a	ALE falling edge before CS active if DS asserted and RW = '1'	0		ns

Table 46 Prliminary Microprocessor Interface Timing Values (cont'd)

No.	Parameter		Limit Values	
			max.	
20b	ALE falling edge before DS active if CS asserted and RW = '1'	0		ns
21a	RW setup before CS active if DS asserted	10		ns
21b	RW setup before DS active if CS asserted	10		ns
22a	AD output after CS active if DS asserted and RW = '1'	30	90	ns
22b	AD output after DS active if CS asserted and RW = '1'	30	90	ns
23a	Read data valid after CS active if DS asserted and RW = '1'	30	90	ns
23b	Read data valid after DS active if CS asserted and RW = '1'	30	90	ns
24a	ALE rising edge after CS active if DS asserted and RW='1'	100		ns
24b	ALE rising edge after DS active if CS asserted and RW='1'	100		ns
25a	Read data hold after CS inactive if DS asserted and RW = '1'	0		ns
25b	Read data hold after DS inactive if CS asserted and RW = '1'	0		ns
26a	RW hold after CS inactive if DS asserted	10		ns
26b	RW hold after DS inactive if CS asserted	10		ns
27a	AD tristate after CS inactive if DS asserted and RW = '1'	0	25	ns
27b	AD tristate after DS inactive if CS asserted and RW = '1'	0	25	ns
28a	ALE falling edge before CS rising edge if DS asserted and RW = '0'	25		ns
28b	ALE falling edge before DS rising edge if CS asserted and RW = '0'	25		ns
29a	Write data setup before CS rising edge if DS asserted and RW = '0'	20		ns

Table 46 Prliminary Microprocessor Interface Timing Values (cont'd)

No.	Parameter	Limit Values		Unit
		min.	max.	
29b	Write data setup before DS rising edge if CS asserted and RW = '0'	20		ns
30a	Write data hold <u>after CS</u> rising edge if DS asserted and RW = '0'	20		ns
30b	Write data hold <u>after DS</u> rising edge if CS asserted and RW = '0'	20		ns
31a	CS rising edge <u>before</u> ALE falling edge if DS asserted and RW = '0'	20		ns
31b	DS rising edge <u>before</u> ALE falling edge if CS asserted and RW = '0'	20		ns
32a	Address valid before CS active if DS asserted and RW = '1'	0		ns
32b	Address valid before DS active if CS asserted and RW = '1'	0		ns
33a	Address hold after CS active if DS asserted and RW='1'	100		ns
33b	Address hold after DS active if CS asserted and RW='1'	100		ns
34a	Address setup <u>before</u> CS rising edge if DS asserted and RW = '0'	25		ns
34b	Address setup <u>before</u> DS rising edge if CS asserted and RW = '0'	25		ns
35a	Address hold after CS rising edge if DS asserted and RW = '0'	20		ns
35b	Address hold after DS rising edge if CS asserted and RW = '0'	20		ns

6.6.9 JTAG Timing

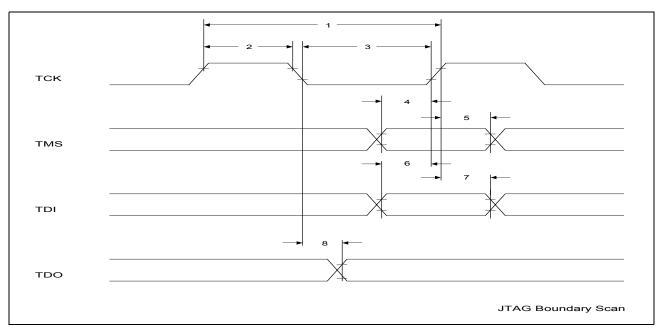
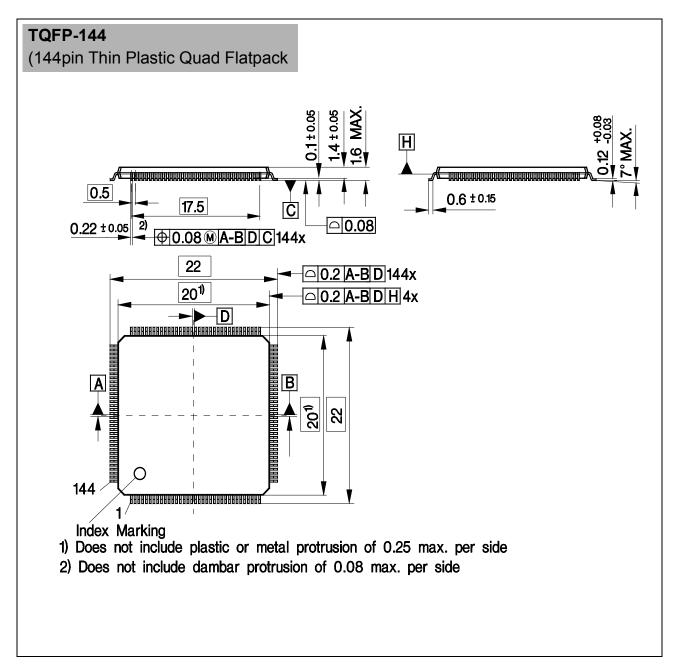


Figure 49 JTAG Boundary Scan Timing

Table 47 JTAG Boundary Scan Timing

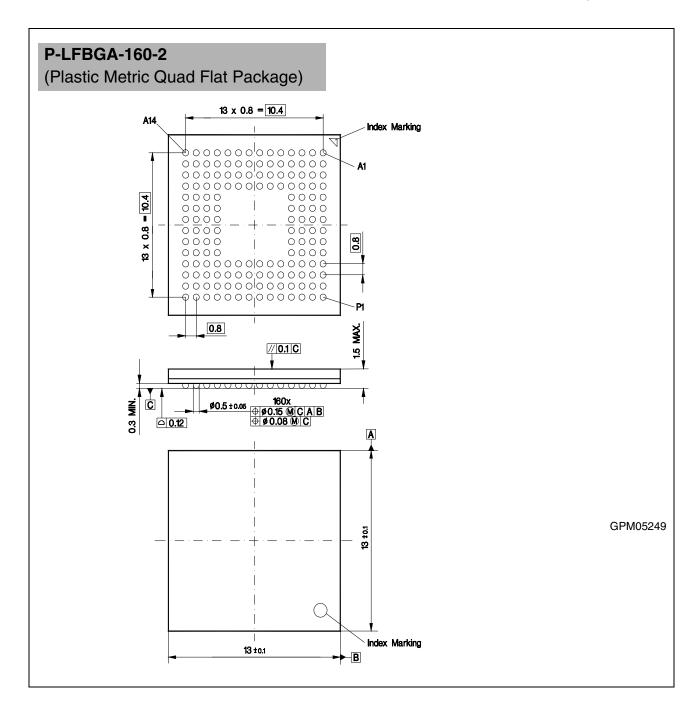

No.	Name	Parameter	Lim	Limit Values	
			min.	max.	
1	t_tck_period	TCK period	250		ns
2	t_tck_high	TCK high time	80		ns
3	t_tck_low	TCK low time	80		ns
4	t_tms_setup	TMS setup time	40		ns
5	t_tms_hold	TMS hold time	40		ns
6	t_tdi_setup	TDI setup time	40		ns
7	t_tdi_hold	TDI hold time	40		ns
8	t_tck_tdo_fall	TDO valid delay		100	ns

Data Sheet 156 Rev. 2, 2004-07-28

Package Outlines

7 Package Outlines

Sorts of Packing


Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm

Package Outlines

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

Dimensions in mm

8 Glossary

acoustic echo

Acoustic echoes consist of reflected signals caused by acoustic environments, e.g. hands-free phones which are connected with a 2-wire circuit to a hybrid. An echo path is introduced by the acoustic path from earphone to microphone.

combined loss (A_{COM})

The sum of echo return loss, echo return loss enhancement and non-linear processing loss (if present). This loss relates L_{Rin} to L_{RET} by:

 $L_{RET} = L_{Rin} - A_{COM}$, where: $A_{COM} = A_{ECHO} + A_{CANC} + A_{NLP}$

comfort noise

Insertion of pseudo-random noise during the silent interval when the NLP operates or allowance of some of the background or idle channel noise to pass through the NLP in order to prevent the annoyance of intervals of speech with background noise followed by intervals of silence.

composite echo

Composite echoes consist of the electric echoes and acoustic echoes caused by reflected signals at hybrids and acoustic environments, e.g. hands-free telephones.

convergence

The process of developing a model of the echo path which will be used in the echo estimator to produce the estimate of the circuit echo.

convergence time

For a defined echo path, the interval between the instant a defined test signal is applied to the receive-in port of an echo canceller with the estimated echo path impulse response initially set to zero, and the instant the returned echo level at the send-out port reaches a defined level.

echo canceller

A voice-operated device placed in the 4-wire portion of a circuit and used for reducing near-end echo present on the send path by subtracting an estimation of that echo from the near-end echo (see **Figure 50**)

Data Sheet 159 Rev. 2, 2004-07-28

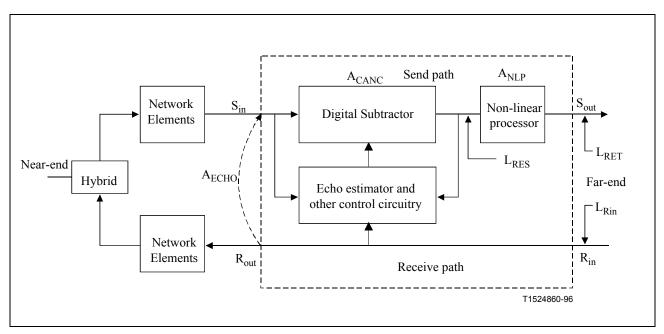


Figure 50 Location of levels and loss of an echo canceller

echo path

The transmission path between R_{out} and S_{in} of an echo canceller. This term is intended to describe the signal path of the echo.

echo path capacity

The maximum echo path delay for which an echo canceller is designed to operate.

echo path delay (t_d)

The delay from the Rout port to the Sin port due to the delays inherent in the echo path transmission facilities including dispersion time due to the network elements. In case of multiple echo paths, all delays and dispersions of any individual echo path are included. The dispersion time, which varies with different networks, is required to accommodate the band-limiting, and hybrid transit effects.

echo return loss (ERL) (A_{ECHO})

The attenuation of a signal from the receive-out port (R_{out}) to the send-in port (S_{in}) of an echo canceller, due to transmission and hybrid loss, i.e. the loss in the (near-end) echo path.

echo return loss enhancement (ERLE) (A_{CANC})

The attenuation of the echo signal as it passes through the send path of an echo canceller. This definition specifically excludes any non-linear processing on the output of the canceller to provide for further attenuation.

electric echo

Electric echoes consist of reflected signals caused by the near-end impedance mismatch, e.g. at a 2-wire/4-wire conversion unit (hybrid).

far end

The side of an echo canceller which does not contain the echo path on which the echo canceller is intended to operate.

H register

The register within the echo canceller which stores the impulse response model of the echo path.

leak time

The interval between the instant a test signal is removed from the receive-in port of a fully-converged echo canceller and the instant the echo path model in the echo canceller changes such that, when a test signal is reapplied to R_{in} with the convergence circuitry inhibited, the returned echo is at a defined level.

This definition refers to echo cancellers employing, for example, leaky integrators in the convergence circuitry.

cancelled-end

The side of an echo canceller which contains the echo path on which the echo canceller is intended to operate. This includes all transmission facilities and equipment (including the hybrid and terminating telephone set) which is included in the echo path.

non-linear processor (NLP)

A device having a defined suppression threshold level and in which:

a)signals having a level detected as being below the threshold are suppressed; and b)signals having a level detected as being above the threshold are passed although the signal may be distorted.

NOTE 1 – The precise operation of a NLP depends upon the detection and control algorithm used.

Data Sheet 161 Rev. 2, 2004-07-28

NOTE 2 – An example of a NLP is an analogue center clipper in which all signal levels below a defined threshold are forced to some minimum value.

non-linear processing loss (A_{NLP})

Additional attenuation of residual echo level by a NLP placed in the send path of an echo canceller.

pure delay (t_r)

The delay from the R_{out} port to the Sin port due to the delays inherent in the near-end echo path transmission facilities, not including dispersion time due to the network elements. In this case, the transit time directly across the hybrid is assumed to be zero (see **Figure 51**).

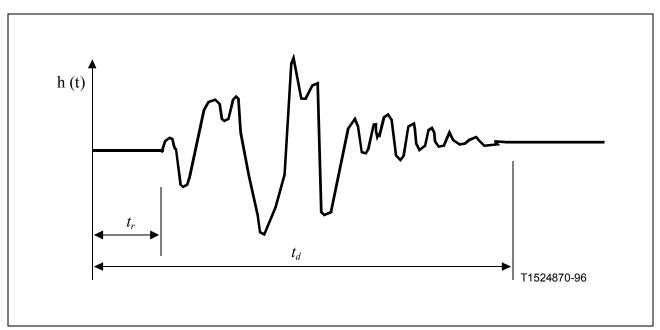


Figure 51 Example of an impulse response of an echo path

residual echo level (L_{RES})

The level of the echo signal which remains at the send-out port of an operating echo canceller after imperfect cancellation of the circuit echo. It is related to the receive-in signal L_{Rin} by:

L_{RES} = L_{RIN} -A_{ECHO} - A_{CANC}

Any non-linear processing is not included.

returned echo level (L_{RET})

The level of the signal at the send-out port of an operating echo canceller which will be returned to the talker. The attenuation of a NLP is included, if one is normally present.

Data Sheet 162 Rev. 2, 2004-07-28

 L_{RET} is related to L_{Rin} by: $L_{RET} = L_{RIN} \text{ - (} A_{ECHO} + A_{CANC} + A_{NLP} \text{)}$ If non-linear processing is not present, note that $L_{RES} = L_{RET}.$

www.infineon.com

Published by Infineon Technologies AG